File size: 21,165 Bytes
a3e84f7
 
 
7d6db8f
a3e84f7
c7866f1
a89496d
9325b1e
7173e65
a3e84f7
279d167
476d640
a3e84f7
5e4e307
279d167
14ae0ea
8cb3861
e0a5f6f
14ae0ea
279d167
e81ecc1
a3e84f7
 
9f855cb
a3e84f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7866f1
9f855cb
 
 
 
 
 
 
 
 
 
 
bd1743b
 
 
 
 
9f855cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9325b1e
9f855cb
 
 
 
 
 
 
 
 
 
9325b1e
2ca3f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f855cb
bd1743b
 
 
 
 
 
 
 
 
 
 
9325b1e
bd1743b
 
 
 
9f855cb
bd1743b
9f855cb
 
9325b1e
bd1743b
9f855cb
 
 
 
 
 
 
 
 
9325b1e
9f855cb
 
 
 
b175ee9
279d167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1743b
e0a5f6f
 
 
 
93a34d1
9325b1e
8cb3861
8a3bb8f
8cb3861
8a3bb8f
 
8cb3861
 
7173e65
6990e4a
e0a5f6f
279d167
e0a5f6f
 
 
 
 
6990e4a
d8d3e30
9325b1e
e0a5f6f
 
8a3bb8f
 
476d640
 
279d167
8cb3861
 
 
383ad82
 
 
 
 
8a93db1
383ad82
8a93db1
383ad82
8a3bb8f
8cb3861
279d167
c7866f1
9f855cb
a3e84f7
c7866f1
57c446b
c7866f1
 
 
 
 
 
 
 
 
 
9325b1e
7173e65
 
8125531
c7866f1
279d167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7d68b
279d167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056a44f
279d167
 
 
 
 
 
 
9325b1e
 
e0a5f6f
9325b1e
7bb4fe3
9325b1e
7173e65
 
9325b1e
7173e65
 
c7866f1
 
a3e84f7
 
7173e65
 
a3e84f7
e0a5f6f
8cb3861
 
 
 
 
 
 
8a3bb8f
8cb3861
 
 
 
 
 
 
 
 
 
 
 
4c773e2
8a3bb8f
 
 
 
 
 
 
93a34d1
8a3bb8f
 
 
 
 
 
 
 
 
 
93a34d1
8a3bb8f
 
 
 
 
8cb3861
 
93a34d1
 
8cb3861
 
c7866f1
8cb3861
4c773e2
8cb3861
 
 
 
a3e84f7
8a3bb8f
 
 
93a34d1
4c773e2
8cb3861
 
4c773e2
a3e84f7
8cb3861
c04778c
 
a3e84f7
8cb3861
 
4c773e2
8cb3861
 
 
 
8a3bb8f
 
 
 
15b101a
4c773e2
8cb3861
 
4c773e2
a3e84f7
8cb3861
c04778c
 
a3e84f7
 
 
 
 
 
 
 
 
 
c7866f1
 
 
 
a3e84f7
c7866f1
e0a5f6f
6da1b0d
fb9ce8b
6da1b0d
 
fb9ce8b
 
6da1b0d
 
fb9ce8b
6da1b0d
 
 
 
 
 
 
 
 
 
fb9ce8b
 
6da1b0d
 
fb9ce8b
 
 
 
 
6da1b0d
 
 
 
fb9ce8b
6da1b0d
 
bd1743b
e0a5f6f
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8125531
 
 
 
6a5decf
8125531
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import os
import sys
import glob
import torch
import shutil
import torchaudio
import pytorch_lightning as pl
import random
from tqdm import tqdm
from pathlib import Path
from remfx import effects as effect_lib
from typing import Any, List, Dict
from torch.utils.data import Dataset, DataLoader
from remfx.utils import select_random_chunk
import multiprocessing


# https://zenodo.org/record/1193957 -> VocalSet

ALL_EFFECTS = effect_lib.Pedalboard_Effects
# print(ALL_EFFECTS)


vocalset_splits = {
    "train": [
        "male1",
        "male2",
        "male3",
        "male4",
        "male5",
        "male6",
        "male7",
        "male8",
        "male9",
        "female1",
        "female2",
        "female3",
        "female4",
        "female5",
        "female6",
        "female7",
    ],
    "val": ["male10", "female8"],
    "test": ["male11", "female9"],
}

guitarset_splits = {"train": ["00", "01", "02", "03"], "val": ["04"], "test": ["05"]}
idmt_guitar_splits = {
    "train": ["classical", "country_folk", "jazz", "latin", "metal", "pop"],
    "val": ["reggae", "ska"],
    "test": ["rock", "blues"],
}
idmt_bass_splits = {
    "train": ["BE", "BEQ"],
    "val": ["VIF"],
    "test": ["VIS"],
}
dsd_100_splits = {
    "train": ["train"],
    "val": ["val"],
    "test": ["test"],
}
idmt_drums_splits = {
    "train": ["WaveDrum02", "TechnoDrum01"],
    "val": ["RealDrum01"],
    "test": ["TechnoDrum02", "WaveDrum01"],
}


def locate_files(root: str, mode: str):
    file_list = []
    # ------------------------- VocalSet -------------------------
    vocalset_dir = os.path.join(root, "VocalSet1-2")
    if os.path.isdir(vocalset_dir):
        # find all singer directories
        singer_dirs = glob.glob(os.path.join(vocalset_dir, "data_by_singer", "*"))
        singer_dirs = [
            sd for sd in singer_dirs if os.path.basename(sd) in vocalset_splits[mode]
        ]
        files = []
        for singer_dir in singer_dirs:
            files += glob.glob(os.path.join(singer_dir, "**", "**", "*.wav"))
        print(f"Found {len(files)} files in VocalSet {mode}.")
        file_list.append(sorted(files))
    # ------------------------- GuitarSet -------------------------
    guitarset_dir = os.path.join(root, "audio_mono-mic")
    if os.path.isdir(guitarset_dir):
        files = glob.glob(os.path.join(guitarset_dir, "*.wav"))
        files = [
            f
            for f in files
            if os.path.basename(f).split("_")[0] in guitarset_splits[mode]
        ]
        print(f"Found {len(files)} files in GuitarSet {mode}.")
        file_list.append(sorted(files))
    # # ------------------------- IDMT-SMT-GUITAR -------------------------
    # idmt_smt_guitar_dir = os.path.join(root, "IDMT-SMT-GUITAR_V2")
    # if os.path.isdir(idmt_smt_guitar_dir):
    #     files = glob.glob(
    #         os.path.join(
    #             idmt_smt_guitar_dir, "IDMT-SMT-GUITAR_V2", "dataset4", "**", "*.wav"
    #         ),
    #         recursive=True,
    #     )
    #     files = [
    #         f
    #         for f in files
    #         if os.path.basename(f).split("_")[0] in idmt_guitar_splits[mode]
    #     ]
    #     file_list.append(sorted(files))
    #     print(f"Found {len(files)} files in IDMT-SMT-Guitar {mode}.")
    # ------------------------- IDMT-SMT-BASS -------------------------
    # idmt_smt_bass_dir = os.path.join(root, "IDMT-SMT-BASS")
    # if os.path.isdir(idmt_smt_bass_dir):
    #     files = glob.glob(
    #         os.path.join(idmt_smt_bass_dir, "**", "*.wav"),
    #         recursive=True,
    #     )
    #     files = [
    #         f
    #         for f in files
    #         if os.path.basename(os.path.dirname(f)) in idmt_bass_splits[mode]
    #     ]
    #     file_list.append(sorted(files))
    #     print(f"Found {len(files)} files in IDMT-SMT-Bass {mode}.")
    # ------------------------- DSD100 ---------------------------------
    dsd_100_dir = os.path.join(root, "DSD100")
    if os.path.isdir(dsd_100_dir):
        files = glob.glob(
            os.path.join(dsd_100_dir, mode, "**", "*.wav"),
            recursive=True,
        )
        file_list.append(sorted(files))
        print(f"Found {len(files)} files in DSD100 {mode}.")
    # ------------------------- IDMT-SMT-DRUMS -------------------------
    idmt_smt_drums_dir = os.path.join(root, "IDMT-SMT-DRUMS-V2")
    if os.path.isdir(idmt_smt_drums_dir):
        files = glob.glob(os.path.join(idmt_smt_drums_dir, "audio", "*.wav"))
        files = [
            f
            for f in files
            if os.path.basename(f).split("_")[0] in idmt_drums_splits[mode]
        ]
        file_list.append(sorted(files))
        print(f"Found {len(files)} files in IDMT-SMT-Drums {mode}.")

    return file_list


def parallel_process_effects(
    chunk_idx: int,
    proc_root: str,
    files: list,
    chunk_size: int,
    effects: list,
    effects_to_keep: list,
    num_kept_effects: tuple,
    shuffle_kept_effects: bool,
    effects_to_remove: list,
    num_removed_effects: tuple,
    shuffle_removed_effects: bool,
    sample_rate: int,
    target_lufs_db: float,
):
    chunk = None
    random_dataset_choice = random.choice(files)
    while chunk is None:
        random_file_choice = random.choice(random_dataset_choice)
        chunk = select_random_chunk(random_file_choice, chunk_size, sample_rate)

    # Sum to mono
    if chunk.shape[0] > 1:
        chunk = chunk.sum(0, keepdim=True)

    dry = chunk

    # loudness normalization
    normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=target_lufs_db)

    # Apply Kept Effects
    # Shuffle effects if specified
    if shuffle_kept_effects:
        effect_indices = torch.randperm(len(effects_to_keep))
    else:
        effect_indices = torch.arange(len(effects_to_keep))

    r1 = num_kept_effects[0]
    r2 = num_kept_effects[1]
    num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
    effect_indices = effect_indices[:num_kept_effects]
    # Index in effect settings
    effect_names_to_apply = [effects_to_keep[i] for i in effect_indices]
    effects_to_apply = [effects[i] for i in effect_names_to_apply]
    # Apply
    dry_labels = []
    for effect in effects_to_apply:
        # Normalize in-between effects
        dry = normalize(effect(dry))
        dry_labels.append(ALL_EFFECTS.index(type(effect)))

    # Apply effects_to_remove
    # Shuffle effects if specified
    if shuffle_removed_effects:
        effect_indices = torch.randperm(len(effects_to_remove))
    else:
        effect_indices = torch.arange(len(effects_to_remove))
    wet = torch.clone(dry)
    r1 = num_removed_effects[0]
    r2 = num_removed_effects[1]
    num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
    effect_indices = effect_indices[:num_removed_effects]
    # Index in effect settings
    effect_names_to_apply = [effects_to_remove[i] for i in effect_indices]
    effects_to_apply = [effects[i] for i in effect_names_to_apply]
    # Apply
    wet_labels = []
    for effect in effects_to_apply:
        # Normalize in-between effects
        wet = normalize(effect(wet))
        wet_labels.append(ALL_EFFECTS.index(type(effect)))

    wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
    dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))

    for label_idx in wet_labels:
        wet_labels_tensor[label_idx] = 1.0

    for label_idx in dry_labels:
        dry_labels_tensor[label_idx] = 1.0

    # Normalize
    normalized_dry = normalize(dry)
    normalized_wet = normalize(wet)

    output_dir = proc_root / str(chunk_idx)
    output_dir.mkdir(exist_ok=True)
    torchaudio.save(output_dir / "input.wav", normalized_wet, sample_rate)
    torchaudio.save(output_dir / "target.wav", normalized_dry, sample_rate)
    torch.save(dry_labels_tensor, output_dir / "dry_effects.pt")
    torch.save(wet_labels_tensor, output_dir / "wet_effects.pt")

    # return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor


class EffectDataset(Dataset):
    def __init__(
        self,
        root: str,
        sample_rate: int,
        chunk_size: int = 262144,
        total_chunks: int = 1000,
        effect_modules: List[Dict[str, torch.nn.Module]] = None,
        effects_to_keep: List[str] = None,
        effects_to_remove: List[str] = None,
        num_kept_effects: List[int] = [1, 5],
        num_removed_effects: List[int] = [1, 5],
        shuffle_kept_effects: bool = True,
        shuffle_removed_effects: bool = False,
        render_files: bool = True,
        render_root: str = None,
        mode: str = "train",
        parallel: bool = True,
    ):
        super().__init__()
        self.chunks = []
        self.song_idx = []
        self.root = Path(root)
        self.render_root = Path(render_root)
        self.chunk_size = chunk_size
        self.total_chunks = total_chunks
        self.sample_rate = sample_rate
        self.mode = mode
        self.num_kept_effects = num_kept_effects
        self.num_removed_effects = num_removed_effects
        self.effects_to_keep = [] if effects_to_keep is None else effects_to_keep
        self.effects_to_remove = [] if effects_to_remove is None else effects_to_remove
        self.normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=-20)
        self.effects = effect_modules
        self.shuffle_kept_effects = shuffle_kept_effects
        self.shuffle_removed_effects = shuffle_removed_effects
        effects_string = "_".join(
            self.effects_to_keep
            + ["_"]
            + self.effects_to_remove
            + ["_"]
            + [str(x) for x in num_kept_effects]
            + ["_"]
            + [str(x) for x in num_removed_effects]
        )
        self.validate_effect_input()
        self.proc_root = self.render_root / "processed" / effects_string / self.mode
        self.parallel = parallel

        self.files = locate_files(self.root, self.mode)

        if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0:
            print("Found processed files.")
            if render_files:
                re_render = input(
                    "WARNING: By default, will re-render files.\n"
                    "Set render_files=False to skip re-rendering.\n"
                    "Are you sure you want to re-render? (y/n): "
                )
                if re_render != "y":
                    sys.exit()
                shutil.rmtree(self.proc_root)

        print("Total datasets:", len(self.files))
        print("Processing files...")
        if render_files:
            # Split audio file into chunks, resample, then apply random effects
            self.proc_root.mkdir(parents=True, exist_ok=True)

            if self.parallel:
                items = [
                    (
                        chunk_idx,
                        self.proc_root,
                        self.files,
                        self.chunk_size,
                        self.effects,
                        self.effects_to_keep,
                        self.num_kept_effects,
                        self.shuffle_kept_effects,
                        self.effects_to_remove,
                        self.num_removed_effects,
                        self.shuffle_removed_effects,
                        self.sample_rate,
                        -20.0,
                    )
                    for chunk_idx in range(self.total_chunks)
                ]
                with multiprocessing.Pool(processes=32) as pool:
                    pool.starmap(parallel_process_effects, items)
                print(f"Done proccessing {self.total_chunks}", flush=True)
            else:
                for num_chunk in tqdm(range(self.total_chunks)):
                    chunk = None
                    random_dataset_choice = random.choice(self.files)
                    while chunk is None:
                        random_file_choice = random.choice(random_dataset_choice)
                        chunk = select_random_chunk(
                            random_file_choice, self.chunk_size, self.sample_rate
                        )

                    # Sum to mono
                    if chunk.shape[0] > 1:
                        chunk = chunk.sum(0, keepdim=True)

                    dry, wet, dry_effects, wet_effects = self.process_effects(chunk)
                    output_dir = self.proc_root / str(num_chunk)
                    output_dir.mkdir(exist_ok=True)
                    torchaudio.save(output_dir / "input.wav", wet, self.sample_rate)
                    torchaudio.save(output_dir / "target.wav", dry, self.sample_rate)
                    torch.save(dry_effects, output_dir / "dry_effects.pt")
                    torch.save(wet_effects, output_dir / "wet_effects.pt")

            print("Finished rendering")
        else:
            self.total_chunks = len(list(self.proc_root.iterdir()))

        print("Total chunks:", self.total_chunks)

    def __len__(self):
        return self.total_chunks

    def __getitem__(self, idx):
        input_file = self.proc_root / str(idx) / "input.wav"
        target_file = self.proc_root / str(idx) / "target.wav"
        dry_effect_names = torch.load(self.proc_root / str(idx) / "dry_effects.pt")
        wet_effect_names = torch.load(self.proc_root / str(idx) / "wet_effects.pt")
        input, sr = torchaudio.load(input_file)
        target, sr = torchaudio.load(target_file)
        return (input, target, dry_effect_names, wet_effect_names)

    def validate_effect_input(self):
        for effect in self.effects.values():
            if type(effect) not in ALL_EFFECTS:
                raise ValueError(
                    f"Effect {effect} not found in ALL_EFFECTS. "
                    f"Please choose from {ALL_EFFECTS}"
                )
        for effect in self.effects_to_keep:
            if effect not in self.effects.keys():
                raise ValueError(
                    f"Effect {effect} not found in self.effects. "
                    f"Please choose from {self.effects.keys()}"
                )
        for effect in self.effects_to_remove:
            if effect not in self.effects.keys():
                raise ValueError(
                    f"Effect {effect} not found in self.effects. "
                    f"Please choose from {self.effects.keys()}"
                )
        kept_str = "randomly" if self.shuffle_kept_effects else "in order"
        rem_str = "randomly" if self.shuffle_removed_effects else "in order"
        if self.num_kept_effects[0] > self.num_kept_effects[1]:
            raise ValueError(
                f"num_kept_effects must be a tuple of (min, max). "
                f"Got {self.num_kept_effects}"
            )
        if self.num_kept_effects[0] == self.num_kept_effects[1]:
            num_kept_str = f"{self.num_kept_effects[0]}"
        else:
            num_kept_str = (
                f"Between {self.num_kept_effects[0]}-{self.num_kept_effects[1]}"
            )
        if self.num_removed_effects[0] > self.num_removed_effects[1]:
            raise ValueError(
                f"num_removed_effects must be a tuple of (min, max). "
                f"Got {self.num_removed_effects}"
            )
        if self.num_removed_effects[0] == self.num_removed_effects[1]:
            num_rem_str = f"{self.num_removed_effects[0]}"
        else:
            num_rem_str = (
                f"Between {self.num_removed_effects[0]}-{self.num_removed_effects[1]}"
            )
        rem_fx = self.effects_to_remove
        kept_fx = self.effects_to_keep
        print(
            f"Effect Summary: \n"
            f"Apply kept effects: {kept_fx} ({num_kept_str}, chosen {kept_str}) -> Dry\n"
            f"Apply remove effects: {rem_fx} ({num_rem_str}, chosen {rem_str}) -> Wet\n"
        )

    def process_effects(self, dry: torch.Tensor):
        # Apply Kept Effects
        # Shuffle effects if specified
        if self.shuffle_kept_effects:
            effect_indices = torch.randperm(len(self.effects_to_keep))
        else:
            effect_indices = torch.arange(len(self.effects_to_keep))

        r1 = self.num_kept_effects[0]
        r2 = self.num_kept_effects[1]
        num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
        effect_indices = effect_indices[:num_kept_effects]
        # Index in effect settings
        effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices]
        effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
        # Apply
        dry_labels = []
        for effect in effects_to_apply:
            # Normalize in-between effects
            dry = self.normalize(effect(dry))
            dry_labels.append(ALL_EFFECTS.index(type(effect)))

        # Apply effects_to_remove
        # Shuffle effects if specified
        if self.shuffle_removed_effects:
            effect_indices = torch.randperm(len(self.effects_to_remove))
        else:
            effect_indices = torch.arange(len(self.effects_to_remove))
        wet = torch.clone(dry)
        r1 = self.num_removed_effects[0]
        r2 = self.num_removed_effects[1]
        num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
        effect_indices = effect_indices[:num_removed_effects]
        # Index in effect settings
        effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices]
        effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
        # Apply
        wet_labels = []
        for effect in effects_to_apply:
            # Normalize in-between effects
            wet = self.normalize(effect(wet))
            wet_labels.append(ALL_EFFECTS.index(type(effect)))

        wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
        dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))

        for label_idx in wet_labels:
            wet_labels_tensor[label_idx] = 1.0

        for label_idx in dry_labels:
            dry_labels_tensor[label_idx] = 1.0

        # Normalize
        normalized_dry = self.normalize(dry)
        normalized_wet = self.normalize(wet)
        return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor


class InferenceDataset(Dataset):
    def __init__(self, root: str, sample_rate: int, **kwargs):
        self.root = Path(root)
        self.sample_rate = sample_rate
        self.clean_paths = sorted(list(self.root.glob("clean/*.wav")))
        self.effected_paths = sorted(list(self.root.glob("effected/*.wav")))

    def __len__(self) -> int:
        return len(self.clean_paths)

    def __getitem__(self, idx: int) -> torch.Tensor:
        clean_path = self.clean_paths[idx]
        effected_path = self.effected_paths[idx]
        clean_audio, sr = torchaudio.load(clean_path)
        clean = torchaudio.functional.resample(clean_audio, sr, self.sample_rate)
        effected_audio, sr = torchaudio.load(effected_path)
        effected = torchaudio.functional.resample(effected_audio, sr, self.sample_rate)

        # Sum to mono
        clean = torch.sum(clean, dim=0, keepdim=True)
        effected = torch.sum(effected, dim=0, keepdim=True)

        # Pad or trim effected to clean
        if effected.shape[1] > clean.shape[1]:
            effected = effected[:, : clean.shape[1]]
        elif effected.shape[1] < clean.shape[1]:
            pad_size = clean.shape[1] - effected.shape[1]
            effected = torch.nn.functional.pad(effected, (0, pad_size))

        dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
        wet_labels_tensor = torch.ones(len(ALL_EFFECTS))

        return effected, clean, dry_labels_tensor, wet_labels_tensor


class EffectDatamodule(pl.LightningDataModule):
    def __init__(
        self,
        train_dataset,
        val_dataset,
        test_dataset,
        *,
        batch_size: int,
        num_workers: int,
        pin_memory: bool = False,
        **kwargs: int,
    ) -> None:
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.pin_memory = pin_memory

    def setup(self, stage: Any = None) -> None:
        pass

    def train_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.train_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=True,
        )

    def val_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.val_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )

    def test_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.test_dataset,
            batch_size=2,  # Use small, consistent batch size for testing
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )