Spaces:
Sleeping
Sleeping
File size: 12,182 Bytes
55b1e30 0bc0490 b0dcef4 0bc0490 3a13dbf 0bc0490 b0dcef4 0bc0490 b0dcef4 0bc0490 973ccc4 0bc0490 b0dcef4 0bc0490 b0dcef4 0bc0490 31216a6 b0dcef4 0bc0490 b0dcef4 0bc0490 f137487 867f506 b0dcef4 867f506 b0dcef4 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 55b1e30 6be0fa0 6c58c95 6be0fa0 6c58c95 9bbcd56 6be0fa0 9bbcd56 3a13dbf 9bbcd56 0bc0490 9bbcd56 55b1e30 0bc0490 973ccc4 0bc0490 53c7c09 b0dcef4 28726ff b0dcef4 0bc0490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
from fastapi import FastAPI, UploadFile, File, HTTPException
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from huggingface_hub import HfApi
import os
from dotenv import load_dotenv
from typing import Optional
# Charger les variables d'environnement, y compris la clé API Hugging Face
load_dotenv()
api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")
# Initialiser l'API Hugging Face
hf_api = HfApi()
app = FastAPI()
# Add CORS middleware to allow requests from Vue.js frontend
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:8080",
"https://labeling-tools.onrender.com/",
],
allow_credentials=True,
allow_methods=["*"], # Permet toutes les méthodes HTTP (GET, POST, etc.)
allow_headers=["*"], # Permet tous les en-têtes (Content-Type, Authorization, etc.)
)
# Charger le processeur d'image et le modèle fine-tuné localement
local_model_path = r'./vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
model.eval()
# Fonction pour classifier une image
def classifier_image(image):
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
inputs = processor(images=image_pil, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
return predicted_class
# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = int(frame_rate * intervalle)
sequences_surfing = []
frame_index = 0
in_surf_sequence = False
start_timestamp = None
with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
success, frame = cap.read()
while success:
if frame_index % frame_interval == 0:
timestamp = round(frame_index / frame_rate, 2)
classe = classifier_image(frame)
if classe == "Surfing" and not in_surf_sequence:
in_surf_sequence = True
start_timestamp = timestamp
elif classe != "Surfing" and in_surf_sequence:
in_surf_sequence = False
end_timestamp = timestamp
sequences_surfing.append((start_timestamp, end_timestamp))
success, frame = cap.read()
frame_index += 1
pbar.update(1)
if in_surf_sequence:
sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
cap.release()
dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
return dataframe_sequences
# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
events = []
blocks = []
for idx, row in dataframe.iterrows():
block = {
"id": f"Surfing{idx + 1}",
"start": round(row["Début"], 2),
"end": round(row["Fin"], 2)
}
blocks.append(block)
event = {
"event": "Surfing",
"blocks": blocks
}
events.append(event)
return events
# # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: UploadFile = File(...)):
# try:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=api_key
# )
# # Analyser la vidéo pour trouver des séquences "Surfing"
# dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# return {"message": "Video uploaded and analyzed successfully!",
# "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}",
# "analysis": json_result}
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
# try:
# # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
# if file:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
# )
# # URL de la vidéo sur Hugging Face
# video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL or file provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video uploaded and analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# Endpoint pour analyser la vidéo via une URL
@app.post("/analyze_video/")
async def analyze_video(user_name: str, video_url: Optional[str] = None):
try:
# Assurez-vous d'avoir une URL valide à ce stade
if not video_url:
raise HTTPException(status_code=400, detail="No valid video URL provided.")
# Analyser la vidéo via l'URL
dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
json_result = convertir_sequences_en_json(dataframe_sequences)
return {
"message": "Video analyzed successfully!",
"file_url": video_url,
"analysis": json_result
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to analyze video: {str(e)}")
# # Endpoint pour analyser la vidéo à partir d'une URL
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, video_url: Optional[str] = None):
# try:
# # Log for debugging purposes
# print(f"Received user_name: {user_name}")
# print(f"Received video_url: {video_url}")
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL provided.")
# # Télécharge la vidéo temporairement pour l'analyser
# temp_file_path = "/tmp/video_to_analyze.mp4"
# os.system(f"wget -O {temp_file_path} {video_url}")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# # Supprimer la vidéo temporaire après l'analyse
# os.remove(temp_file_path)
# return {
# "message": "Video analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# print(f"Error during video analysis: {str(e)}") # Log the error
# raise HTTPException(status_code=500, detail=f"Failed to analyze video: {str(e)}")
@app.post("/upload_video/")
async def upload_video(user_name: str, file: UploadFile = File(...)):
try:
print(f"Received request to upload video for user: {user_name}")
# Sauvegarder le fichier temporairement
temp_file_path = f"/tmp/{file.filename}"
with open(temp_file_path, "wb") as buffer:
buffer.write(await file.read())
# Préparer l'upload sur Hugging Face
dataset_name = "2nzi/Video-Sequence-Labeling"
repo_path = f"{user_name}/raw/{file.filename}"
print(f"Uploading {temp_file_path} to Hugging Face at {repo_path}")
hf_api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=repo_path,
repo_id=dataset_name,
repo_type="dataset",
token=api_key
)
# Générer l'URL finale
file_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
print(f"File successfully uploaded to: {file_url}")
return {"status": "success", "file_url": file_url}
except Exception as e:
print(f"Error during upload: {str(e)}")
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
# Fonction pour uploader une vidéo vers un dataset Hugging Face
def upload_to_hf_dataset(user_name: str, video_path: str):
dataset_name = "2nzi/Video-Sequence-Labeling"
repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"
try:
hf_api.upload_file(
path_or_fileobj=video_path, #chelou
path_in_repo=repo_path,
repo_id=dataset_name,
repo_type="dataset",
token=api_key
)
# Retourner l'URL de la vidéo après l'upload
url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
return {"status": "success", "url": url}
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/", response_class=HTMLResponse)
async def index():
return (
"""
<html>
<body>
<h1>Hello world!</h1>
<p>This `/` is the most simple and default endpoint.</p>
<p>If you want to learn more, check out the documentation of the API at
<a href='/docs'>/docs</a> or
<a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
</p>
</body>
</html>
"""
)
# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
|