Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
import cv2
|
3 |
import torch
|
@@ -118,14 +271,25 @@ def convertir_sequences_en_json(dataframe):
|
|
118 |
events.append(event)
|
119 |
return events
|
120 |
|
|
|
|
|
|
|
|
|
121 |
@app.post("/analyze_video/")
|
122 |
async def analyze_video(file: UploadFile = File(...)):
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
126 |
-
|
|
|
127 |
json_result = convertir_sequences_en_json(dataframe_sequences)
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
|
130 |
@app.get("/", response_class=HTMLResponse)
|
131 |
async def index():
|
|
|
1 |
+
# from fastapi import FastAPI, UploadFile, File
|
2 |
+
# import cv2
|
3 |
+
# import torch
|
4 |
+
# import pandas as pd
|
5 |
+
# from PIL import Image
|
6 |
+
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
# from tqdm import tqdm
|
8 |
+
# import json
|
9 |
+
# import shutil
|
10 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
# from fastapi.responses import HTMLResponse
|
12 |
+
|
13 |
+
# app = FastAPI()
|
14 |
+
|
15 |
+
# # Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
|
16 |
+
# app.add_middleware(
|
17 |
+
# CORSMiddleware,
|
18 |
+
# # allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
19 |
+
# allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
20 |
+
# allow_credentials=True,
|
21 |
+
# allow_methods=["*"], # Allows all HTTP methods (GET, POST, etc.)
|
22 |
+
# allow_headers=["*"], # Allows all headers (such as Content-Type, Authorization, etc.)
|
23 |
+
# )
|
24 |
+
|
25 |
+
# # Charger le processor et le modèle fine-tuné depuis le chemin local
|
26 |
+
# local_model_path = r'./vit-finetuned-ucf101'
|
27 |
+
# processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
28 |
+
# model = AutoModelForImageClassification.from_pretrained(local_model_path)
|
29 |
+
# # model = AutoModelForImageClassification.from_pretrained("2nzi/vit-finetuned-ucf101")
|
30 |
+
# model.eval()
|
31 |
+
|
32 |
+
# # Fonction pour classifier une image
|
33 |
+
# def classifier_image(image):
|
34 |
+
# image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
35 |
+
# inputs = processor(images=image_pil, return_tensors="pt")
|
36 |
+
# with torch.no_grad():
|
37 |
+
# outputs = model(**inputs)
|
38 |
+
# logits = outputs.logits
|
39 |
+
# predicted_class_idx = logits.argmax(-1).item()
|
40 |
+
# predicted_class = model.config.id2label[predicted_class_idx]
|
41 |
+
# return predicted_class
|
42 |
+
|
43 |
+
# # Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
|
44 |
+
# def identifier_sequences_surfing(video_path, intervalle=0.5):
|
45 |
+
# cap = cv2.VideoCapture(video_path)
|
46 |
+
# frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
47 |
+
# total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
48 |
+
# frame_interval = int(frame_rate * intervalle)
|
49 |
+
|
50 |
+
# resultats = []
|
51 |
+
# sequences_surfing = []
|
52 |
+
# frame_index = 0
|
53 |
+
# in_surf_sequence = False
|
54 |
+
# start_timestamp = None
|
55 |
+
|
56 |
+
# with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
|
57 |
+
# success, frame = cap.read()
|
58 |
+
# while success:
|
59 |
+
# if frame_index % frame_interval == 0:
|
60 |
+
# timestamp = round(frame_index / frame_rate, 2) # Maintain precision to the centisecond level
|
61 |
+
# classe = classifier_image(frame)
|
62 |
+
# resultats.append({"Timestamp": timestamp, "Classe": classe})
|
63 |
+
|
64 |
+
# if classe == "Surfing" and not in_surf_sequence:
|
65 |
+
# in_surf_sequence = True
|
66 |
+
# start_timestamp = timestamp
|
67 |
+
|
68 |
+
# elif classe != "Surfing" and in_surf_sequence:
|
69 |
+
# # Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
|
70 |
+
# success_next, frame_next = cap.read()
|
71 |
+
# next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
|
72 |
+
# classe_next = None
|
73 |
+
|
74 |
+
# if success_next:
|
75 |
+
# classe_next = classifier_image(frame_next)
|
76 |
+
# resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})
|
77 |
+
|
78 |
+
# # Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
|
79 |
+
# if classe_next == "Surfing":
|
80 |
+
# success = success_next
|
81 |
+
# frame = frame_next
|
82 |
+
# frame_index += frame_interval
|
83 |
+
# pbar.update(frame_interval)
|
84 |
+
# continue
|
85 |
+
# else:
|
86 |
+
# # Sinon, terminer la séquence "Surfing"
|
87 |
+
# in_surf_sequence = False
|
88 |
+
# end_timestamp = timestamp
|
89 |
+
# sequences_surfing.append((start_timestamp, end_timestamp))
|
90 |
+
|
91 |
+
# success, frame = cap.read()
|
92 |
+
# frame_index += 1
|
93 |
+
# pbar.update(1)
|
94 |
+
|
95 |
+
# # Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
|
96 |
+
# if in_surf_sequence:
|
97 |
+
# sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
|
98 |
+
|
99 |
+
# cap.release()
|
100 |
+
# dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
|
101 |
+
# return dataframe_sequences
|
102 |
+
|
103 |
+
# # Fonction pour convertir les séquences en format JSON
|
104 |
+
# def convertir_sequences_en_json(dataframe):
|
105 |
+
# events = []
|
106 |
+
# blocks = []
|
107 |
+
# for idx, row in dataframe.iterrows():
|
108 |
+
# block = {
|
109 |
+
# "id": f"Surfing{idx + 1}",
|
110 |
+
# "start": round(row["Début"], 2),
|
111 |
+
# "end": round(row["Fin"], 2)
|
112 |
+
# }
|
113 |
+
# blocks.append(block)
|
114 |
+
# event = {
|
115 |
+
# "event": "Surfing",
|
116 |
+
# "blocks": blocks
|
117 |
+
# }
|
118 |
+
# events.append(event)
|
119 |
+
# return events
|
120 |
+
|
121 |
+
# @app.post("/analyze_video/")
|
122 |
+
# async def analyze_video(file: UploadFile = File(...)):
|
123 |
+
# with open("uploaded_video.mp4", "wb") as buffer:
|
124 |
+
# shutil.copyfileobj(file.file, buffer)
|
125 |
+
|
126 |
+
# dataframe_sequences = identifier_sequences_surfing("uploaded_video.mp4", intervalle=1)
|
127 |
+
# json_result = convertir_sequences_en_json(dataframe_sequences)
|
128 |
+
# return json_result
|
129 |
+
|
130 |
+
# @app.get("/", response_class=HTMLResponse)
|
131 |
+
# async def index():
|
132 |
+
# return (
|
133 |
+
# """
|
134 |
+
# <html>
|
135 |
+
# <body>
|
136 |
+
# <h1>Hello world!</h1>
|
137 |
+
# <p>This `/` is the most simple and default endpoint.</p>
|
138 |
+
# <p>If you want to learn more, check out the documentation of the API at
|
139 |
+
# <a href='/docs'>/docs</a> or
|
140 |
+
# <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
|
141 |
+
# </p>
|
142 |
+
# </body>
|
143 |
+
# </html>
|
144 |
+
# """
|
145 |
+
# )
|
146 |
+
|
147 |
+
|
148 |
+
# # Lancer l'application avec uvicorn (command line)
|
149 |
+
# # uvicorn main:app --reload
|
150 |
+
# # http://localhost:8000/docs#/
|
151 |
+
# # (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
|
152 |
+
|
153 |
+
|
154 |
from fastapi import FastAPI, UploadFile, File
|
155 |
import cv2
|
156 |
import torch
|
|
|
271 |
events.append(event)
|
272 |
return events
|
273 |
|
274 |
+
|
275 |
+
import os
|
276 |
+
import tempfile
|
277 |
+
|
278 |
@app.post("/analyze_video/")
|
279 |
async def analyze_video(file: UploadFile = File(...)):
|
280 |
+
# Utiliser tempfile pour créer un fichier temporaire
|
281 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4", dir="/tmp") as tmp:
|
282 |
+
shutil.copyfileobj(file.file, tmp)
|
283 |
+
tmp_path = tmp.name
|
284 |
|
285 |
+
# Analyser la vidéo
|
286 |
+
dataframe_sequences = identifier_sequences_surfing(tmp_path, intervalle=1)
|
287 |
json_result = convertir_sequences_en_json(dataframe_sequences)
|
288 |
+
|
289 |
+
# Supprimer le fichier temporaire après utilisation
|
290 |
+
os.remove(tmp_path)
|
291 |
+
|
292 |
+
return {"filename": file.filename, "result": json_result}
|
293 |
|
294 |
@app.get("/", response_class=HTMLResponse)
|
295 |
async def index():
|