File size: 8,741 Bytes
0bc0490
b0dcef4
 
 
 
 
 
 
 
 
0bc0490
 
 
3a13dbf
0bc0490
 
 
 
 
 
 
 
 
 
b0dcef4
 
 
0bc0490
b0dcef4
 
0bc0490
 
 
 
b0dcef4
0bc0490
 
b0dcef4
 
0bc0490
31216a6
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0490
b0dcef4
 
 
 
 
 
0bc0490
 
 
f137487
867f506
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f506
b0dcef4
 
 
 
 
 
 
 
3a13dbf
 
 
 
 
 
 
 
0bc0490
3a13dbf
 
 
0bc0490
3a13dbf
 
 
 
 
 
 
0bc0490
3a13dbf
 
 
 
 
 
0bc0490
3a13dbf
 
 
0bc0490
3a13dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0490
 
 
 
3a13dbf
0bc0490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c7c09
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from fastapi import FastAPI, UploadFile, File, HTTPException
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from huggingface_hub import HfApi
import os
from dotenv import load_dotenv
from typing import Optional

# Charger les variables d'environnement, y compris la clé API Hugging Face
load_dotenv()

api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
    raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")

# Initialiser l'API Hugging Face
hf_api = HfApi()

app = FastAPI()

# Add CORS middleware to allow requests from Vue.js frontend
app.add_middleware(
    CORSMiddleware,
    allow_origins=[
        "http://localhost:8080",
        "https://labeling2-163849140747.europe-west9.run.app/",
    ],
    allow_credentials=True,
    allow_methods=["*"],  # Permet toutes les méthodes HTTP (GET, POST, etc.)
    allow_headers=["*"],  # Permet tous les en-têtes (Content-Type, Authorization, etc.)
)

# Charger le processeur d'image et le modèle fine-tuné localement
local_model_path = r'./vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
model.eval()

# Fonction pour classifier une image
def classifier_image(image):
    image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    inputs = processor(images=image_pil, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_class = model.config.id2label[predicted_class_idx]
    return predicted_class

# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
    cap = cv2.VideoCapture(video_path)
    frame_rate = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = int(frame_rate * intervalle)

    sequences_surfing = []
    frame_index = 0
    in_surf_sequence = False
    start_timestamp = None

    with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
        success, frame = cap.read()
        while success:
            if frame_index % frame_interval == 0:
                timestamp = round(frame_index / frame_rate, 2)
                classe = classifier_image(frame)

                if classe == "Surfing" and not in_surf_sequence:
                    in_surf_sequence = True
                    start_timestamp = timestamp
                elif classe != "Surfing" and in_surf_sequence:
                    in_surf_sequence = False
                    end_timestamp = timestamp
                    sequences_surfing.append((start_timestamp, end_timestamp))

            success, frame = cap.read()
            frame_index += 1
            pbar.update(1)

    if in_surf_sequence:
        sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))

    cap.release()
    dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
    return dataframe_sequences

# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
    events = []
    blocks = []
    for idx, row in dataframe.iterrows():
        block = {
            "id": f"Surfing{idx + 1}",
            "start": round(row["Début"], 2),
            "end": round(row["Fin"], 2)
        }
        blocks.append(block)
    event = {
        "event": "Surfing",
        "blocks": blocks
    }
    events.append(event)
    return events

# # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: UploadFile = File(...)):
#     try:
#         # Sauvegarder la vidéo temporairement
#         temp_file_path = f"/tmp/{file.filename}"
#         with open(temp_file_path, "wb") as buffer:
#             shutil.copyfileobj(file.file, buffer)

#         # Uploader la vidéo sur Hugging Face Hub
#         dataset_name = "2nzi/Video-Sequence-Labeling"
#         target_path_in_repo = f"{user_name}/raw/{file.filename}"

#         hf_api.upload_file(
#             path_or_fileobj=temp_file_path,
#             path_in_repo=target_path_in_repo,
#             repo_id=dataset_name,
#             repo_type="dataset",
#             token=api_key
#         )

#         # Analyser la vidéo pour trouver des séquences "Surfing"
#         dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
#         json_result = convertir_sequences_en_json(dataframe_sequences)

#         # Supprimer le fichier temporaire après l'upload
#         os.remove(temp_file_path)

#         return {"message": "Video uploaded and analyzed successfully!", 
#                 "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}", 
#                 "analysis": json_result}

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")


@app.post("/analyze_video/")
async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
    try:
        # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
        if file:
            # Sauvegarder la vidéo temporairement
            temp_file_path = f"/tmp/{file.filename}"
            with open(temp_file_path, "wb") as buffer:
                shutil.copyfileobj(file.file, buffer)

            # Uploader la vidéo sur Hugging Face Hub
            dataset_name = "2nzi/Video-Sequence-Labeling"
            target_path_in_repo = f"{user_name}/raw/{file.filename}"

            hf_api.upload_file(
                path_or_fileobj=temp_file_path,
                path_in_repo=target_path_in_repo,
                repo_id=dataset_name,
                repo_type="dataset",
                token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
            )

            # URL de la vidéo sur Hugging Face
            video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
            # Supprimer le fichier temporaire après l'upload
            os.remove(temp_file_path)

        # Assurez-vous d'avoir une URL valide à ce stade
        if not video_url:
            raise HTTPException(status_code=400, detail="No valid video URL or file provided.")

        # Analyser la vidéo via l'URL
        dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
        json_result = convertir_sequences_en_json(dataframe_sequences)

        return {
            "message": "Video uploaded and analyzed successfully!",
            "file_url": video_url,
            "analysis": json_result
        }

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")


# Fonction pour uploader une vidéo vers un dataset Hugging Face
def upload_to_hf_dataset(user_name: str, video_path: str):
    dataset_name = "2nzi/Video-Sequence-Labeling"
    repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"

    try:
        hf_api.upload_file(
            path_or_fileobj=video_path,
            path_in_repo=repo_path,
            repo_id=dataset_name,
            repo_type="dataset",
            token=api_key
        )
        
        # Retourner l'URL de la vidéo après l'upload
        url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
        return {"status": "success", "url": url}
    except Exception as e:
        return {"status": "error", "message": str(e)}


@app.get("/", response_class=HTMLResponse)
async def index():
    return (
        """
        <html>
            <body>
                <h1>Hello world!</h1>
                <p>This `/` is the most simple and default endpoint.</p>
                <p>If you want to learn more, check out the documentation of the API at 
                <a href='/docs'>/docs</a> or 
                <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
                </p>
            </body>
        </html>
        """
    )

# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1