File size: 20,064 Bytes
55b1e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bbcd56
0bc0490
b0dcef4
 
 
 
 
 
 
 
 
0bc0490
 
 
3a13dbf
0bc0490
 
 
 
 
 
 
 
 
 
b0dcef4
 
 
0bc0490
b0dcef4
 
0bc0490
 
973ccc4
0bc0490
b0dcef4
0bc0490
 
b0dcef4
 
0bc0490
31216a6
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0490
b0dcef4
 
 
 
 
 
0bc0490
 
 
f137487
867f506
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f506
b0dcef4
 
 
 
 
 
 
 
3a13dbf
 
 
 
 
 
 
 
0bc0490
3a13dbf
 
 
0bc0490
3a13dbf
 
 
 
 
 
 
0bc0490
3a13dbf
 
 
 
 
 
0bc0490
3a13dbf
 
 
0bc0490
3a13dbf
 
 
 
55b1e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffb6778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bbcd56
 
 
3a13dbf
9bbcd56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0490
 
9bbcd56
 
 
 
55b1e30
0bc0490
 
 
 
 
 
 
 
973ccc4
0bc0490
 
 
 
 
 
 
 
 
 
 
53c7c09
b0dcef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28726ff
 
b0dcef4
 
 
0bc0490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# from fastapi import FastAPI, UploadFile, File, HTTPException
# import cv2
# import torch
# import pandas as pd
# from PIL import Image
# from transformers import AutoImageProcessor, AutoModelForImageClassification
# from tqdm import tqdm
# import shutil
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.responses import HTMLResponse
# from huggingface_hub import HfApi
# import os
# from dotenv import load_dotenv
# from typing import Optional

# # Charger les variables d'environnement, y compris la clé API Hugging Face
# load_dotenv()

# api_key = os.getenv("HUGGINGFACE_API_KEY")
# if not api_key:
#     raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")

# # Initialiser l'API Hugging Face
# hf_api = HfApi()

# app = FastAPI()

# # Add CORS middleware to allow requests from Vue.js frontend
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=[
#         "http://localhost:8080",
#         "https://labeling2-163849140747.europe-west9.run.app/",
#         "https://my-vue-app-latest-qqzd.onrender.com/",
#     ],
#     allow_credentials=True,
#     allow_methods=["*"],  # Permet toutes les méthodes HTTP (GET, POST, etc.)
#     allow_headers=["*"],  # Permet tous les en-têtes (Content-Type, Authorization, etc.)
# )

# # Charger le processeur d'image et le modèle fine-tuné localement
# local_model_path = r'./vit-finetuned-ucf101'
# processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
# model = AutoModelForImageClassification.from_pretrained(local_model_path)
# model.eval()

# # Fonction pour classifier une image
# def classifier_image(image):
#     image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
#     inputs = processor(images=image_pil, return_tensors="pt")
#     with torch.no_grad():
#         outputs = model(**inputs)
#         logits = outputs.logits
#     predicted_class_idx = logits.argmax(-1).item()
#     predicted_class = model.config.id2label[predicted_class_idx]
#     return predicted_class

# # Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
# def identifier_sequences_surfing(video_path, intervalle=0.5):
#     cap = cv2.VideoCapture(video_path)
#     frame_rate = cap.get(cv2.CAP_PROP_FPS)
#     total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
#     frame_interval = int(frame_rate * intervalle)

#     sequences_surfing = []
#     frame_index = 0
#     in_surf_sequence = False
#     start_timestamp = None

#     with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
#         success, frame = cap.read()
#         while success:
#             if frame_index % frame_interval == 0:
#                 timestamp = round(frame_index / frame_rate, 2)
#                 classe = classifier_image(frame)

#                 if classe == "Surfing" and not in_surf_sequence:
#                     in_surf_sequence = True
#                     start_timestamp = timestamp
#                 elif classe != "Surfing" and in_surf_sequence:
#                     in_surf_sequence = False
#                     end_timestamp = timestamp
#                     sequences_surfing.append((start_timestamp, end_timestamp))

#             success, frame = cap.read()
#             frame_index += 1
#             pbar.update(1)

#     if in_surf_sequence:
#         sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))

#     cap.release()
#     dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
#     return dataframe_sequences

# # Fonction pour convertir les séquences en format JSON
# def convertir_sequences_en_json(dataframe):
#     events = []
#     blocks = []
#     for idx, row in dataframe.iterrows():
#         block = {
#             "id": f"Surfing{idx + 1}",
#             "start": round(row["Début"], 2),
#             "end": round(row["Fin"], 2)
#         }
#         blocks.append(block)
#     event = {
#         "event": "Surfing",
#         "blocks": blocks
#     }
#     events.append(event)
#     return events

# # # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# # @app.post("/analyze_video/")
# # async def analyze_video(user_name: str, file: UploadFile = File(...)):
# #     try:
# #         # Sauvegarder la vidéo temporairement
# #         temp_file_path = f"/tmp/{file.filename}"
# #         with open(temp_file_path, "wb") as buffer:
# #             shutil.copyfileobj(file.file, buffer)

# #         # Uploader la vidéo sur Hugging Face Hub
# #         dataset_name = "2nzi/Video-Sequence-Labeling"
# #         target_path_in_repo = f"{user_name}/raw/{file.filename}"

# #         hf_api.upload_file(
# #             path_or_fileobj=temp_file_path,
# #             path_in_repo=target_path_in_repo,
# #             repo_id=dataset_name,
# #             repo_type="dataset",
# #             token=api_key
# #         )

# #         # Analyser la vidéo pour trouver des séquences "Surfing"
# #         dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# #         json_result = convertir_sequences_en_json(dataframe_sequences)

# #         # Supprimer le fichier temporaire après l'upload
# #         os.remove(temp_file_path)

# #         return {"message": "Video uploaded and analyzed successfully!", 
# #                 "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}", 
# #                 "analysis": json_result}

# #     except Exception as e:
# #         raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")


# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
#     try:
#         # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
#         if file:
#             # Sauvegarder la vidéo temporairement
#             temp_file_path = f"/tmp/{file.filename}"
#             with open(temp_file_path, "wb") as buffer:
#                 shutil.copyfileobj(file.file, buffer)

#             # Uploader la vidéo sur Hugging Face Hub
#             dataset_name = "2nzi/Video-Sequence-Labeling"
#             target_path_in_repo = f"{user_name}/raw/{file.filename}"

#             hf_api.upload_file(
#                 path_or_fileobj=temp_file_path,
#                 path_in_repo=target_path_in_repo,
#                 repo_id=dataset_name,
#                 repo_type="dataset",
#                 token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
#             )

#             # URL de la vidéo sur Hugging Face
#             video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
#             # Supprimer le fichier temporaire après l'upload
#             os.remove(temp_file_path)

#         # Assurez-vous d'avoir une URL valide à ce stade
#         if not video_url:
#             raise HTTPException(status_code=400, detail="No valid video URL or file provided.")

#         # Analyser la vidéo via l'URL
#         dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
#         json_result = convertir_sequences_en_json(dataframe_sequences)

#         return {
#             "message": "Video uploaded and analyzed successfully!",
#             "file_url": video_url,
#             "analysis": json_result
#         }

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")


# # Fonction pour uploader une vidéo vers un dataset Hugging Face
# def upload_to_hf_dataset(user_name: str, video_path: str):
#     dataset_name = "2nzi/Video-Sequence-Labeling"
#     repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"

#     try:
#         hf_api.upload_file(
#             path_or_fileobj=video_path,
#             path_in_repo=repo_path,
#             repo_id=dataset_name,
#             repo_type="dataset",
#             token=api_key
#         )
        
#         # Retourner l'URL de la vidéo après l'upload
#         url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
#         return {"status": "success", "url": url}
#     except Exception as e:
#         return {"status": "error", "message": str(e)}


# @app.get("/", response_class=HTMLResponse)
# async def index():
#     return (
#         """
#         <html>
#             <body>
#                 <h1>Hello world!</h1>
#                 <p>This `/` is the most simple and default endpoint.</p>
#                 <p>If you want to learn more, check out the documentation of the API at 
#                 <a href='/docs'>/docs</a> or 
#                 <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
#                 </p>
#             </body>
#         </html>
#         """
#     )

# # Lancer l'application avec uvicorn (command line)
# # uvicorn main:app --reload
# # http://localhost:8000/docs#/
# # (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1


from fastapi import FastAPI, UploadFile, File, HTTPException
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from huggingface_hub import HfApi
import os
from dotenv import load_dotenv
from typing import Optional

# Charger les variables d'environnement, y compris la clé API Hugging Face
load_dotenv()

api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
    raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")

# Initialiser l'API Hugging Face
hf_api = HfApi()

app = FastAPI()

# Add CORS middleware to allow requests from Vue.js frontend
app.add_middleware(
    CORSMiddleware,
    allow_origins=[
        "http://localhost:8080",
        "https://labeling-tools.onrender.com/",
    ],
    allow_credentials=True,
    allow_methods=["*"],  # Permet toutes les méthodes HTTP (GET, POST, etc.)
    allow_headers=["*"],  # Permet tous les en-têtes (Content-Type, Authorization, etc.)
)

# Charger le processeur d'image et le modèle fine-tuné localement
local_model_path = r'./vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
model.eval()

# Fonction pour classifier une image
def classifier_image(image):
    image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    inputs = processor(images=image_pil, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_class = model.config.id2label[predicted_class_idx]
    return predicted_class

# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
    cap = cv2.VideoCapture(video_path)
    frame_rate = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = int(frame_rate * intervalle)

    sequences_surfing = []
    frame_index = 0
    in_surf_sequence = False
    start_timestamp = None

    with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
        success, frame = cap.read()
        while success:
            if frame_index % frame_interval == 0:
                timestamp = round(frame_index / frame_rate, 2)
                classe = classifier_image(frame)

                if classe == "Surfing" and not in_surf_sequence:
                    in_surf_sequence = True
                    start_timestamp = timestamp
                elif classe != "Surfing" and in_surf_sequence:
                    in_surf_sequence = False
                    end_timestamp = timestamp
                    sequences_surfing.append((start_timestamp, end_timestamp))

            success, frame = cap.read()
            frame_index += 1
            pbar.update(1)

    if in_surf_sequence:
        sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))

    cap.release()
    dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
    return dataframe_sequences

# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
    events = []
    blocks = []
    for idx, row in dataframe.iterrows():
        block = {
            "id": f"Surfing{idx + 1}",
            "start": round(row["Début"], 2),
            "end": round(row["Fin"], 2)
        }
        blocks.append(block)
    event = {
        "event": "Surfing",
        "blocks": blocks
    }
    events.append(event)
    return events

# # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: UploadFile = File(...)):
#     try:
#         # Sauvegarder la vidéo temporairement
#         temp_file_path = f"/tmp/{file.filename}"
#         with open(temp_file_path, "wb") as buffer:
#             shutil.copyfileobj(file.file, buffer)

#         # Uploader la vidéo sur Hugging Face Hub
#         dataset_name = "2nzi/Video-Sequence-Labeling"
#         target_path_in_repo = f"{user_name}/raw/{file.filename}"

#         hf_api.upload_file(
#             path_or_fileobj=temp_file_path,
#             path_in_repo=target_path_in_repo,
#             repo_id=dataset_name,
#             repo_type="dataset",
#             token=api_key
#         )

#         # Analyser la vidéo pour trouver des séquences "Surfing"
#         dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
#         json_result = convertir_sequences_en_json(dataframe_sequences)

#         # Supprimer le fichier temporaire après l'upload
#         os.remove(temp_file_path)

#         return {"message": "Video uploaded and analyzed successfully!", 
#                 "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}", 
#                 "analysis": json_result}

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")


# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
#     try:
#         # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
#         if file:
#             # Sauvegarder la vidéo temporairement
#             temp_file_path = f"/tmp/{file.filename}"
#             with open(temp_file_path, "wb") as buffer:
#                 shutil.copyfileobj(file.file, buffer)

#             # Uploader la vidéo sur Hugging Face Hub
#             dataset_name = "2nzi/Video-Sequence-Labeling"
#             target_path_in_repo = f"{user_name}/raw/{file.filename}"

#             hf_api.upload_file(
#                 path_or_fileobj=temp_file_path,
#                 path_in_repo=target_path_in_repo,
#                 repo_id=dataset_name,
#                 repo_type="dataset",
#                 token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
#             )

#             # URL de la vidéo sur Hugging Face
#             video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
#             # Supprimer le fichier temporaire après l'upload
#             os.remove(temp_file_path)

#         # Assurez-vous d'avoir une URL valide à ce stade
#         if not video_url:
#             raise HTTPException(status_code=400, detail="No valid video URL or file provided.")

#         # Analyser la vidéo via l'URL
#         dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
#         json_result = convertir_sequences_en_json(dataframe_sequences)

#         return {
#             "message": "Video uploaded and analyzed successfully!",
#             "file_url": video_url,
#             "analysis": json_result
#         }

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")


# # Endpoint pour analyser la vidéo via une URL
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, video_url: Optional[str] = None):
#     try:
#         # Assurez-vous d'avoir une URL valide à ce stade
#         if not video_url:
#             raise HTTPException(status_code=400, detail="No valid video URL provided.")

#         # Analyser la vidéo via l'URL
#         dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
#         json_result = convertir_sequences_en_json(dataframe_sequences)

#         return {
#             "message": "Video analyzed successfully!",
#             "file_url": video_url,
#             "analysis": json_result
#         }

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=f"Failed to analyze video: {str(e)}")




@app.post("/upload_video/")
async def upload_video(user_name: str, file: UploadFile = File(...)):
    try:
        print(f"Received request to upload video for user: {user_name}")

        # Sauvegarder le fichier temporairement
        temp_file_path = f"/tmp/{file.filename}"
        with open(temp_file_path, "wb") as buffer:
            buffer.write(await file.read())

        # Préparer l'upload sur Hugging Face
        dataset_name = "2nzi/Video-Sequence-Labeling"
        repo_path = f"{user_name}/raw/{file.filename}"

        print(f"Uploading {temp_file_path} to Hugging Face at {repo_path}")

        hf_api.upload_file(
            path_or_fileobj=temp_file_path,
            path_in_repo=repo_path,
            repo_id=dataset_name,
            repo_type="dataset",
            token=api_key
        )

        # Générer l'URL finale
        file_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
        print(f"File successfully uploaded to: {file_url}")

        return {"status": "success", "file_url": file_url}

    except Exception as e:
        print(f"Error during upload: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")




# Fonction pour uploader une vidéo vers un dataset Hugging Face
def upload_to_hf_dataset(user_name: str, video_path: str):
    dataset_name = "2nzi/Video-Sequence-Labeling"
    repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"

    try:
        hf_api.upload_file(
            path_or_fileobj=video_path, #chelou
            path_in_repo=repo_path,
            repo_id=dataset_name,
            repo_type="dataset",
            token=api_key
        )
        
        # Retourner l'URL de la vidéo après l'upload
        url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
        return {"status": "success", "url": url}
    except Exception as e:
        return {"status": "error", "message": str(e)}


@app.get("/", response_class=HTMLResponse)
async def index():
    return (
        """
        <html>
            <body>
                <h1>Hello world!</h1>
                <p>This `/` is the most simple and default endpoint.</p>
                <p>If you want to learn more, check out the documentation of the API at 
                <a href='/docs'>/docs</a> or 
                <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
                </p>
            </body>
        </html>
        """
    )



# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1