Spaces:
Sleeping
Sleeping
File size: 20,064 Bytes
55b1e30 9bbcd56 0bc0490 b0dcef4 0bc0490 3a13dbf 0bc0490 b0dcef4 0bc0490 b0dcef4 0bc0490 973ccc4 0bc0490 b0dcef4 0bc0490 b0dcef4 0bc0490 31216a6 b0dcef4 0bc0490 b0dcef4 0bc0490 f137487 867f506 b0dcef4 867f506 b0dcef4 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 0bc0490 3a13dbf 55b1e30 ffb6778 9bbcd56 3a13dbf 9bbcd56 0bc0490 9bbcd56 55b1e30 0bc0490 973ccc4 0bc0490 53c7c09 b0dcef4 28726ff b0dcef4 0bc0490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
# from fastapi import FastAPI, UploadFile, File, HTTPException
# import cv2
# import torch
# import pandas as pd
# from PIL import Image
# from transformers import AutoImageProcessor, AutoModelForImageClassification
# from tqdm import tqdm
# import shutil
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.responses import HTMLResponse
# from huggingface_hub import HfApi
# import os
# from dotenv import load_dotenv
# from typing import Optional
# # Charger les variables d'environnement, y compris la clé API Hugging Face
# load_dotenv()
# api_key = os.getenv("HUGGINGFACE_API_KEY")
# if not api_key:
# raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")
# # Initialiser l'API Hugging Face
# hf_api = HfApi()
# app = FastAPI()
# # Add CORS middleware to allow requests from Vue.js frontend
# app.add_middleware(
# CORSMiddleware,
# allow_origins=[
# "http://localhost:8080",
# "https://labeling2-163849140747.europe-west9.run.app/",
# "https://my-vue-app-latest-qqzd.onrender.com/",
# ],
# allow_credentials=True,
# allow_methods=["*"], # Permet toutes les méthodes HTTP (GET, POST, etc.)
# allow_headers=["*"], # Permet tous les en-têtes (Content-Type, Authorization, etc.)
# )
# # Charger le processeur d'image et le modèle fine-tuné localement
# local_model_path = r'./vit-finetuned-ucf101'
# processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
# model = AutoModelForImageClassification.from_pretrained(local_model_path)
# model.eval()
# # Fonction pour classifier une image
# def classifier_image(image):
# image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# inputs = processor(images=image_pil, return_tensors="pt")
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# predicted_class_idx = logits.argmax(-1).item()
# predicted_class = model.config.id2label[predicted_class_idx]
# return predicted_class
# # Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
# def identifier_sequences_surfing(video_path, intervalle=0.5):
# cap = cv2.VideoCapture(video_path)
# frame_rate = cap.get(cv2.CAP_PROP_FPS)
# total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# frame_interval = int(frame_rate * intervalle)
# sequences_surfing = []
# frame_index = 0
# in_surf_sequence = False
# start_timestamp = None
# with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
# success, frame = cap.read()
# while success:
# if frame_index % frame_interval == 0:
# timestamp = round(frame_index / frame_rate, 2)
# classe = classifier_image(frame)
# if classe == "Surfing" and not in_surf_sequence:
# in_surf_sequence = True
# start_timestamp = timestamp
# elif classe != "Surfing" and in_surf_sequence:
# in_surf_sequence = False
# end_timestamp = timestamp
# sequences_surfing.append((start_timestamp, end_timestamp))
# success, frame = cap.read()
# frame_index += 1
# pbar.update(1)
# if in_surf_sequence:
# sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
# cap.release()
# dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
# return dataframe_sequences
# # Fonction pour convertir les séquences en format JSON
# def convertir_sequences_en_json(dataframe):
# events = []
# blocks = []
# for idx, row in dataframe.iterrows():
# block = {
# "id": f"Surfing{idx + 1}",
# "start": round(row["Début"], 2),
# "end": round(row["Fin"], 2)
# }
# blocks.append(block)
# event = {
# "event": "Surfing",
# "blocks": blocks
# }
# events.append(event)
# return events
# # # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# # @app.post("/analyze_video/")
# # async def analyze_video(user_name: str, file: UploadFile = File(...)):
# # try:
# # # Sauvegarder la vidéo temporairement
# # temp_file_path = f"/tmp/{file.filename}"
# # with open(temp_file_path, "wb") as buffer:
# # shutil.copyfileobj(file.file, buffer)
# # # Uploader la vidéo sur Hugging Face Hub
# # dataset_name = "2nzi/Video-Sequence-Labeling"
# # target_path_in_repo = f"{user_name}/raw/{file.filename}"
# # hf_api.upload_file(
# # path_or_fileobj=temp_file_path,
# # path_in_repo=target_path_in_repo,
# # repo_id=dataset_name,
# # repo_type="dataset",
# # token=api_key
# # )
# # # Analyser la vidéo pour trouver des séquences "Surfing"
# # dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# # json_result = convertir_sequences_en_json(dataframe_sequences)
# # # Supprimer le fichier temporaire après l'upload
# # os.remove(temp_file_path)
# # return {"message": "Video uploaded and analyzed successfully!",
# # "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}",
# # "analysis": json_result}
# # except Exception as e:
# # raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
# try:
# # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
# if file:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
# )
# # URL de la vidéo sur Hugging Face
# video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL or file provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video uploaded and analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# # Fonction pour uploader une vidéo vers un dataset Hugging Face
# def upload_to_hf_dataset(user_name: str, video_path: str):
# dataset_name = "2nzi/Video-Sequence-Labeling"
# repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"
# try:
# hf_api.upload_file(
# path_or_fileobj=video_path,
# path_in_repo=repo_path,
# repo_id=dataset_name,
# repo_type="dataset",
# token=api_key
# )
# # Retourner l'URL de la vidéo après l'upload
# url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
# return {"status": "success", "url": url}
# except Exception as e:
# return {"status": "error", "message": str(e)}
# @app.get("/", response_class=HTMLResponse)
# async def index():
# return (
# """
# <html>
# <body>
# <h1>Hello world!</h1>
# <p>This `/` is the most simple and default endpoint.</p>
# <p>If you want to learn more, check out the documentation of the API at
# <a href='/docs'>/docs</a> or
# <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
# </p>
# </body>
# </html>
# """
# )
# # Lancer l'application avec uvicorn (command line)
# # uvicorn main:app --reload
# # http://localhost:8000/docs#/
# # (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
from fastapi import FastAPI, UploadFile, File, HTTPException
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from huggingface_hub import HfApi
import os
from dotenv import load_dotenv
from typing import Optional
# Charger les variables d'environnement, y compris la clé API Hugging Face
load_dotenv()
api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")
# Initialiser l'API Hugging Face
hf_api = HfApi()
app = FastAPI()
# Add CORS middleware to allow requests from Vue.js frontend
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:8080",
"https://labeling-tools.onrender.com/",
],
allow_credentials=True,
allow_methods=["*"], # Permet toutes les méthodes HTTP (GET, POST, etc.)
allow_headers=["*"], # Permet tous les en-têtes (Content-Type, Authorization, etc.)
)
# Charger le processeur d'image et le modèle fine-tuné localement
local_model_path = r'./vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
model.eval()
# Fonction pour classifier une image
def classifier_image(image):
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
inputs = processor(images=image_pil, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
return predicted_class
# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = int(frame_rate * intervalle)
sequences_surfing = []
frame_index = 0
in_surf_sequence = False
start_timestamp = None
with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
success, frame = cap.read()
while success:
if frame_index % frame_interval == 0:
timestamp = round(frame_index / frame_rate, 2)
classe = classifier_image(frame)
if classe == "Surfing" and not in_surf_sequence:
in_surf_sequence = True
start_timestamp = timestamp
elif classe != "Surfing" and in_surf_sequence:
in_surf_sequence = False
end_timestamp = timestamp
sequences_surfing.append((start_timestamp, end_timestamp))
success, frame = cap.read()
frame_index += 1
pbar.update(1)
if in_surf_sequence:
sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
cap.release()
dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
return dataframe_sequences
# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
events = []
blocks = []
for idx, row in dataframe.iterrows():
block = {
"id": f"Surfing{idx + 1}",
"start": round(row["Début"], 2),
"end": round(row["Fin"], 2)
}
blocks.append(block)
event = {
"event": "Surfing",
"blocks": blocks
}
events.append(event)
return events
# # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: UploadFile = File(...)):
# try:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=api_key
# )
# # Analyser la vidéo pour trouver des séquences "Surfing"
# dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# return {"message": "Video uploaded and analyzed successfully!",
# "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}",
# "analysis": json_result}
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
# try:
# # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
# if file:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
# )
# # URL de la vidéo sur Hugging Face
# video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL or file provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video uploaded and analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# # Endpoint pour analyser la vidéo via une URL
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, video_url: Optional[str] = None):
# try:
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to analyze video: {str(e)}")
@app.post("/upload_video/")
async def upload_video(user_name: str, file: UploadFile = File(...)):
try:
print(f"Received request to upload video for user: {user_name}")
# Sauvegarder le fichier temporairement
temp_file_path = f"/tmp/{file.filename}"
with open(temp_file_path, "wb") as buffer:
buffer.write(await file.read())
# Préparer l'upload sur Hugging Face
dataset_name = "2nzi/Video-Sequence-Labeling"
repo_path = f"{user_name}/raw/{file.filename}"
print(f"Uploading {temp_file_path} to Hugging Face at {repo_path}")
hf_api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=repo_path,
repo_id=dataset_name,
repo_type="dataset",
token=api_key
)
# Générer l'URL finale
file_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
print(f"File successfully uploaded to: {file_url}")
return {"status": "success", "file_url": file_url}
except Exception as e:
print(f"Error during upload: {str(e)}")
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
# Fonction pour uploader une vidéo vers un dataset Hugging Face
def upload_to_hf_dataset(user_name: str, video_path: str):
dataset_name = "2nzi/Video-Sequence-Labeling"
repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"
try:
hf_api.upload_file(
path_or_fileobj=video_path, #chelou
path_in_repo=repo_path,
repo_id=dataset_name,
repo_type="dataset",
token=api_key
)
# Retourner l'URL de la vidéo après l'upload
url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
return {"status": "success", "url": url}
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/", response_class=HTMLResponse)
async def index():
return (
"""
<html>
<body>
<h1>Hello world!</h1>
<p>This `/` is the most simple and default endpoint.</p>
<p>If you want to learn more, check out the documentation of the API at
<a href='/docs'>/docs</a> or
<a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
</p>
</body>
</html>
"""
)
# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
|