Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,151 +1,135 @@
|
|
1 |
-
|
2 |
-
import cv2
|
3 |
-
import torch
|
4 |
import pandas as pd
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
import
|
9 |
-
import shutil
|
10 |
-
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from fastapi.responses import HTMLResponse
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
app.add_middleware(
|
17 |
-
CORSMiddleware,
|
18 |
-
# allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
19 |
-
allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
20 |
-
allow_credentials=True,
|
21 |
-
allow_methods=["*"], # Allows all HTTP methods (GET, POST, etc.)
|
22 |
-
allow_headers=["*"], # Allows all headers (such as Content-Type, Authorization, etc.)
|
23 |
-
)
|
24 |
-
|
25 |
-
# Charger le processor et le modèle fine-tuné depuis le chemin local
|
26 |
-
local_model_path = r'.\vit-finetuned-ucf101'
|
27 |
-
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
28 |
-
model = AutoModelForImageClassification.from_pretrained(local_model_path)
|
29 |
-
# model = AutoModelForImageClassification.from_pretrained("2nzi/vit-finetuned-ucf101")
|
30 |
-
model.eval()
|
31 |
-
|
32 |
-
# Fonction pour classifier une image
|
33 |
-
def classifier_image(image):
|
34 |
-
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
35 |
-
inputs = processor(images=image_pil, return_tensors="pt")
|
36 |
-
with torch.no_grad():
|
37 |
-
outputs = model(**inputs)
|
38 |
-
logits = outputs.logits
|
39 |
-
predicted_class_idx = logits.argmax(-1).item()
|
40 |
-
predicted_class = model.config.id2label[predicted_class_idx]
|
41 |
-
return predicted_class
|
42 |
-
|
43 |
-
# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
|
44 |
-
def identifier_sequences_surfing(video_path, intervalle=0.5):
|
45 |
-
cap = cv2.VideoCapture(video_path)
|
46 |
-
frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
47 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
48 |
-
frame_interval = int(frame_rate * intervalle)
|
49 |
-
|
50 |
-
resultats = []
|
51 |
-
sequences_surfing = []
|
52 |
-
frame_index = 0
|
53 |
-
in_surf_sequence = False
|
54 |
-
start_timestamp = None
|
55 |
-
|
56 |
-
with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
|
57 |
-
success, frame = cap.read()
|
58 |
-
while success:
|
59 |
-
if frame_index % frame_interval == 0:
|
60 |
-
timestamp = round(frame_index / frame_rate, 2) # Maintain precision to the centisecond level
|
61 |
-
classe = classifier_image(frame)
|
62 |
-
resultats.append({"Timestamp": timestamp, "Classe": classe})
|
63 |
-
|
64 |
-
if classe == "Surfing" and not in_surf_sequence:
|
65 |
-
in_surf_sequence = True
|
66 |
-
start_timestamp = timestamp
|
67 |
-
|
68 |
-
elif classe != "Surfing" and in_surf_sequence:
|
69 |
-
# Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
|
70 |
-
success_next, frame_next = cap.read()
|
71 |
-
next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
|
72 |
-
classe_next = None
|
73 |
|
74 |
-
|
75 |
-
classe_next = classifier_image(frame_next)
|
76 |
-
resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})
|
77 |
|
78 |
-
|
79 |
-
if classe_next == "Surfing":
|
80 |
-
success = success_next
|
81 |
-
frame = frame_next
|
82 |
-
frame_index += frame_interval
|
83 |
-
pbar.update(frame_interval)
|
84 |
-
continue
|
85 |
-
else:
|
86 |
-
# Sinon, terminer la séquence "Surfing"
|
87 |
-
in_surf_sequence = False
|
88 |
-
end_timestamp = timestamp
|
89 |
-
sequences_surfing.append((start_timestamp, end_timestamp))
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
pbar.update(1)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
cap.release()
|
100 |
-
dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
|
101 |
-
return dataframe_sequences
|
102 |
-
|
103 |
-
# Fonction pour convertir les séquences en format JSON
|
104 |
-
def convertir_sequences_en_json(dataframe):
|
105 |
-
events = []
|
106 |
-
blocks = []
|
107 |
-
for idx, row in dataframe.iterrows():
|
108 |
-
block = {
|
109 |
-
"id": f"Surfing{idx + 1}",
|
110 |
-
"start": round(row["Début"], 2),
|
111 |
-
"end": round(row["Fin"], 2)
|
112 |
-
}
|
113 |
-
blocks.append(block)
|
114 |
-
event = {
|
115 |
-
"event": "Surfing",
|
116 |
-
"blocks": blocks
|
117 |
}
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
async def index():
|
132 |
return (
|
133 |
-
""
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
<p>This `/` is the most simple and default endpoint.</p>
|
138 |
-
<p>If you want to learn more, check out the documentation of the API at
|
139 |
-
<a href='/docs'>/docs</a> or
|
140 |
-
<a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
|
141 |
-
</p>
|
142 |
-
</body>
|
143 |
-
</html>
|
144 |
-
"""
|
145 |
)
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
# http://localhost:8000/docs#/
|
151 |
-
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
|
|
|
1 |
+
import uvicorn
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
from typing import Union
|
4 |
+
from fastapi import FastAPI, Query
|
5 |
+
import joblib
|
6 |
+
from enum import Enum
|
|
|
|
|
7 |
from fastapi.responses import HTMLResponse
|
8 |
|
9 |
+
description = """
|
10 |
+
Welcome to the GetAround Car Value Prediction API. This app provides an endpoint to predict car values based on various features! Try it out 🕹️
|
11 |
|
12 |
+
## Machine Learning
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
This section includes a Machine Learning endpoint that predicts car values based on various features. Here is the endpoint:
|
|
|
|
|
15 |
|
16 |
+
* `/predict`: **POST** request that accepts a list of car features and returns a predicted car value.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
Check out the documentation below 👇 for more information on each endpoint.
|
19 |
+
"""
|
|
|
20 |
|
21 |
+
tags_metadata = [
|
22 |
+
{
|
23 |
+
"name": "Machine Learning",
|
24 |
+
"description": "Endpoint for predicting car values based on provided features."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
+
]
|
27 |
+
|
28 |
+
app = FastAPI(
|
29 |
+
title="🚗 GetAround Car Value Prediction API",
|
30 |
+
description=description,
|
31 |
+
version="0.1",
|
32 |
+
contact={
|
33 |
+
"name": "Antoine VERDON",
|
34 |
+
"email": "antoineverdon.[email protected]",
|
35 |
+
},
|
36 |
+
openapi_tags=tags_metadata
|
37 |
+
)
|
38 |
|
39 |
+
class CarBrand(str, Enum):
|
40 |
+
citroen = "Citroën"
|
41 |
+
peugeot = "Peugeot"
|
42 |
+
pgo = "PGO"
|
43 |
+
renault = "Renault"
|
44 |
+
audi = "Audi"
|
45 |
+
bmw = "BMW"
|
46 |
+
other = "other"
|
47 |
+
mercedes = "Mercedes"
|
48 |
+
opel = "Opel"
|
49 |
+
volkswagen = "Volkswagen"
|
50 |
+
ferrari = "Ferrari"
|
51 |
+
maserati = "Maserati"
|
52 |
+
mitsubishi = "Mitsubishi"
|
53 |
+
nissan = "Nissan"
|
54 |
+
seat = "SEAT"
|
55 |
+
subaru = "Subaru"
|
56 |
+
toyota = "Toyota"
|
57 |
+
|
58 |
+
class FuelType(str, Enum):
|
59 |
+
diesel = "diesel"
|
60 |
+
petrol = "petrol"
|
61 |
+
hybrid_petrol = "hybrid_petrol"
|
62 |
+
electro = "electro"
|
63 |
+
|
64 |
+
class PaintColor(str, Enum):
|
65 |
+
black = "black"
|
66 |
+
grey = "grey"
|
67 |
+
white = "white"
|
68 |
+
red = "red"
|
69 |
+
silver = "silver"
|
70 |
+
blue = "blue"
|
71 |
+
orange = "orange"
|
72 |
+
beige = "beige"
|
73 |
+
brown = "brown"
|
74 |
+
green = "green"
|
75 |
+
|
76 |
+
class CarType(str, Enum):
|
77 |
+
convertible = "convertible"
|
78 |
+
coupe = "coupe"
|
79 |
+
estate = "estate"
|
80 |
+
hatchback = "hatchback"
|
81 |
+
sedan = "sedan"
|
82 |
+
subcompact = "subcompact"
|
83 |
+
suv = "suv"
|
84 |
+
van = "van"
|
85 |
+
|
86 |
+
@app.get("/", response_class=HTMLResponse, tags=["Introduction Endpoints"])
|
87 |
async def index():
|
88 |
return (
|
89 |
+
"Hello world! This `/` is the most simple and default endpoint. "
|
90 |
+
"If you want to learn more, check out documentation of the API at "
|
91 |
+
"<a href='/docs'>/docs</a> or "
|
92 |
+
"<a href='https://2nzi-getaroundapi.hf.space/docs' target='_blank'>external docs</a>."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
|
95 |
+
@app.post("/predict", tags=["Machine Learning"])
|
96 |
+
async def predict(
|
97 |
+
brand: CarBrand,
|
98 |
+
mileage: int = Query(...),
|
99 |
+
engine_power: int = Query(...),
|
100 |
+
fuel: FuelType = Query(...),
|
101 |
+
paint_color: PaintColor = Query(...),
|
102 |
+
car_type: CarType = Query(...),
|
103 |
+
private_parking_available: bool = Query(...),
|
104 |
+
has_gps: bool = Query(...),
|
105 |
+
has_air_conditioning: bool = Query(...),
|
106 |
+
automatic_car: bool = Query(...),
|
107 |
+
has_getaround_connect: bool = Query(...),
|
108 |
+
has_speed_regulator: bool = Query(...),
|
109 |
+
winter_tires: bool = Query(...)
|
110 |
+
):
|
111 |
+
|
112 |
+
car_data_dict = {
|
113 |
+
'model_key': [brand],
|
114 |
+
'mileage': [mileage],
|
115 |
+
'engine_power': [engine_power],
|
116 |
+
'fuel': [fuel],
|
117 |
+
'paint_color': [paint_color],
|
118 |
+
'car_type': [car_type],
|
119 |
+
'private_parking_available': [private_parking_available],
|
120 |
+
'has_gps': [has_gps],
|
121 |
+
'has_air_conditioning': [has_air_conditioning],
|
122 |
+
'automatic_car': [automatic_car],
|
123 |
+
'has_getaround_connect': [has_getaround_connect],
|
124 |
+
'has_speed_regulator': [has_speed_regulator],
|
125 |
+
'winter_tires': [winter_tires]
|
126 |
+
}
|
127 |
+
car_data = pd.DataFrame(car_data_dict)
|
128 |
+
|
129 |
+
model = joblib.load('best_model_XGBoost.pkl')
|
130 |
+
prediction = model.predict(car_data)
|
131 |
+
response = {"prediction": prediction.tolist()[0]}
|
132 |
+
return response
|
133 |
|
134 |
+
if __name__ == "__main__":
|
135 |
+
uvicorn.run(app, host="0.0.0.0", port=4000)
|
|
|
|