Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,135 +1,151 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
import pandas as pd
|
3 |
-
from
|
4 |
-
from
|
5 |
-
import
|
6 |
-
|
|
|
|
|
7 |
from fastapi.responses import HTMLResponse
|
8 |
|
9 |
-
|
10 |
-
Welcome to the GetAround Car Value Prediction API. This app provides an endpoint to predict car values based on various features! Try it out 🕹️
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
"name": "Antoine VERDON",
|
34 |
-
"email": "[email protected]",
|
35 |
-
},
|
36 |
-
openapi_tags=tags_metadata
|
37 |
-
)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
audi = "Audi"
|
45 |
-
bmw = "BMW"
|
46 |
-
other = "other"
|
47 |
-
mercedes = "Mercedes"
|
48 |
-
opel = "Opel"
|
49 |
-
volkswagen = "Volkswagen"
|
50 |
-
ferrari = "Ferrari"
|
51 |
-
maserati = "Maserati"
|
52 |
-
mitsubishi = "Mitsubishi"
|
53 |
-
nissan = "Nissan"
|
54 |
-
seat = "SEAT"
|
55 |
-
subaru = "Subaru"
|
56 |
-
toyota = "Toyota"
|
57 |
-
|
58 |
-
class FuelType(str, Enum):
|
59 |
-
diesel = "diesel"
|
60 |
-
petrol = "petrol"
|
61 |
-
hybrid_petrol = "hybrid_petrol"
|
62 |
-
electro = "electro"
|
63 |
-
|
64 |
-
class PaintColor(str, Enum):
|
65 |
-
black = "black"
|
66 |
-
grey = "grey"
|
67 |
-
white = "white"
|
68 |
-
red = "red"
|
69 |
-
silver = "silver"
|
70 |
-
blue = "blue"
|
71 |
-
orange = "orange"
|
72 |
-
beige = "beige"
|
73 |
-
brown = "brown"
|
74 |
-
green = "green"
|
75 |
-
|
76 |
-
class CarType(str, Enum):
|
77 |
-
convertible = "convertible"
|
78 |
-
coupe = "coupe"
|
79 |
-
estate = "estate"
|
80 |
-
hatchback = "hatchback"
|
81 |
-
sedan = "sedan"
|
82 |
-
subcompact = "subcompact"
|
83 |
-
suv = "suv"
|
84 |
-
van = "van"
|
85 |
-
|
86 |
-
@app.get("/", response_class=HTMLResponse, tags=["Introduction Endpoints"])
|
87 |
async def index():
|
88 |
return (
|
89 |
-
"
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
|
95 |
-
@app.post("/predict", tags=["Machine Learning"])
|
96 |
-
async def predict(
|
97 |
-
brand: CarBrand,
|
98 |
-
mileage: int = Query(...),
|
99 |
-
engine_power: int = Query(...),
|
100 |
-
fuel: FuelType = Query(...),
|
101 |
-
paint_color: PaintColor = Query(...),
|
102 |
-
car_type: CarType = Query(...),
|
103 |
-
private_parking_available: bool = Query(...),
|
104 |
-
has_gps: bool = Query(...),
|
105 |
-
has_air_conditioning: bool = Query(...),
|
106 |
-
automatic_car: bool = Query(...),
|
107 |
-
has_getaround_connect: bool = Query(...),
|
108 |
-
has_speed_regulator: bool = Query(...),
|
109 |
-
winter_tires: bool = Query(...)
|
110 |
-
):
|
111 |
-
|
112 |
-
car_data_dict = {
|
113 |
-
'model_key': [brand],
|
114 |
-
'mileage': [mileage],
|
115 |
-
'engine_power': [engine_power],
|
116 |
-
'fuel': [fuel],
|
117 |
-
'paint_color': [paint_color],
|
118 |
-
'car_type': [car_type],
|
119 |
-
'private_parking_available': [private_parking_available],
|
120 |
-
'has_gps': [has_gps],
|
121 |
-
'has_air_conditioning': [has_air_conditioning],
|
122 |
-
'automatic_car': [automatic_car],
|
123 |
-
'has_getaround_connect': [has_getaround_connect],
|
124 |
-
'has_speed_regulator': [has_speed_regulator],
|
125 |
-
'winter_tires': [winter_tires]
|
126 |
-
}
|
127 |
-
car_data = pd.DataFrame(car_data_dict)
|
128 |
-
|
129 |
-
model = joblib.load('best_model_XGBoost.pkl')
|
130 |
-
prediction = model.predict(car_data)
|
131 |
-
response = {"prediction": prediction.tolist()[0]}
|
132 |
-
return response
|
133 |
|
134 |
-
|
135 |
-
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
from tqdm import tqdm
|
8 |
+
import json
|
9 |
+
import shutil
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from fastapi.responses import HTMLResponse
|
12 |
|
13 |
+
app = FastAPI()
|
|
|
14 |
|
15 |
+
# Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
# allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
19 |
+
allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
20 |
+
allow_credentials=True,
|
21 |
+
allow_methods=["*"], # Allows all HTTP methods (GET, POST, etc.)
|
22 |
+
allow_headers=["*"], # Allows all headers (such as Content-Type, Authorization, etc.)
|
23 |
+
)
|
24 |
+
|
25 |
+
# Charger le processor et le modèle fine-tuné depuis le chemin local
|
26 |
+
local_model_path = r'.\vit-finetuned-ucf101'
|
27 |
+
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
28 |
+
model = AutoModelForImageClassification.from_pretrained(local_model_path)
|
29 |
+
# model = AutoModelForImageClassification.from_pretrained("2nzi/vit-finetuned-ucf101")
|
30 |
+
model.eval()
|
31 |
+
|
32 |
+
# Fonction pour classifier une image
|
33 |
+
def classifier_image(image):
|
34 |
+
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
35 |
+
inputs = processor(images=image_pil, return_tensors="pt")
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
logits = outputs.logits
|
39 |
+
predicted_class_idx = logits.argmax(-1).item()
|
40 |
+
predicted_class = model.config.id2label[predicted_class_idx]
|
41 |
+
return predicted_class
|
42 |
+
|
43 |
+
# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
|
44 |
+
def identifier_sequences_surfing(video_path, intervalle=0.5):
|
45 |
+
cap = cv2.VideoCapture(video_path)
|
46 |
+
frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
47 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
48 |
+
frame_interval = int(frame_rate * intervalle)
|
49 |
+
|
50 |
+
resultats = []
|
51 |
+
sequences_surfing = []
|
52 |
+
frame_index = 0
|
53 |
+
in_surf_sequence = False
|
54 |
+
start_timestamp = None
|
55 |
+
|
56 |
+
with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
|
57 |
+
success, frame = cap.read()
|
58 |
+
while success:
|
59 |
+
if frame_index % frame_interval == 0:
|
60 |
+
timestamp = round(frame_index / frame_rate, 2) # Maintain precision to the centisecond level
|
61 |
+
classe = classifier_image(frame)
|
62 |
+
resultats.append({"Timestamp": timestamp, "Classe": classe})
|
63 |
+
|
64 |
+
if classe == "Surfing" and not in_surf_sequence:
|
65 |
+
in_surf_sequence = True
|
66 |
+
start_timestamp = timestamp
|
67 |
+
|
68 |
+
elif classe != "Surfing" and in_surf_sequence:
|
69 |
+
# Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
|
70 |
+
success_next, frame_next = cap.read()
|
71 |
+
next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
|
72 |
+
classe_next = None
|
73 |
|
74 |
+
if success_next:
|
75 |
+
classe_next = classifier_image(frame_next)
|
76 |
+
resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})
|
77 |
|
78 |
+
# Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
|
79 |
+
if classe_next == "Surfing":
|
80 |
+
success = success_next
|
81 |
+
frame = frame_next
|
82 |
+
frame_index += frame_interval
|
83 |
+
pbar.update(frame_interval)
|
84 |
+
continue
|
85 |
+
else:
|
86 |
+
# Sinon, terminer la séquence "Surfing"
|
87 |
+
in_surf_sequence = False
|
88 |
+
end_timestamp = timestamp
|
89 |
+
sequences_surfing.append((start_timestamp, end_timestamp))
|
90 |
|
91 |
+
success, frame = cap.read()
|
92 |
+
frame_index += 1
|
93 |
+
pbar.update(1)
|
94 |
|
95 |
+
# Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
|
96 |
+
if in_surf_sequence:
|
97 |
+
sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
|
98 |
+
|
99 |
+
cap.release()
|
100 |
+
dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
|
101 |
+
return dataframe_sequences
|
102 |
+
|
103 |
+
# Fonction pour convertir les séquences en format JSON
|
104 |
+
def convertir_sequences_en_json(dataframe):
|
105 |
+
events = []
|
106 |
+
blocks = []
|
107 |
+
for idx, row in dataframe.iterrows():
|
108 |
+
block = {
|
109 |
+
"id": f"Surfing{idx + 1}",
|
110 |
+
"start": round(row["Début"], 2),
|
111 |
+
"end": round(row["Fin"], 2)
|
112 |
+
}
|
113 |
+
blocks.append(block)
|
114 |
+
event = {
|
115 |
+
"event": "Surfing",
|
116 |
+
"blocks": blocks
|
117 |
}
|
118 |
+
events.append(event)
|
119 |
+
return events
|
120 |
+
|
121 |
+
@app.post("/analyze_video/")
|
122 |
+
async def analyze_video(file: UploadFile = File(...)):
|
123 |
+
with open("uploaded_video.mp4", "wb") as buffer:
|
124 |
+
shutil.copyfileobj(file.file, buffer)
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
dataframe_sequences = identifier_sequences_surfing("uploaded_video.mp4", intervalle=1)
|
127 |
+
json_result = convertir_sequences_en_json(dataframe_sequences)
|
128 |
+
return json_result
|
129 |
+
|
130 |
+
@app.get("/", response_class=HTMLResponse)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
async def index():
|
132 |
return (
|
133 |
+
"""
|
134 |
+
<html>
|
135 |
+
<body>
|
136 |
+
<h1>Hello world!</h1>
|
137 |
+
<p>This `/` is the most simple and default endpoint.</p>
|
138 |
+
<p>If you want to learn more, check out the documentation of the API at
|
139 |
+
<a href='/docs'>/docs</a> or
|
140 |
+
<a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
|
141 |
+
</p>
|
142 |
+
</body>
|
143 |
+
</html>
|
144 |
+
"""
|
145 |
)
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
# Lancer l'application avec uvicorn (command line)
|
149 |
+
# uvicorn main:app --reload
|
150 |
+
# http://localhost:8000/docs#/
|
151 |
+
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
|