Spaces:
Sleeping
Sleeping
import uvicorn | |
import pandas as pd | |
from pydantic import BaseModel | |
from typing import List, Union | |
from fastapi import FastAPI | |
import joblib | |
description = """ | |
Welcome to the GetAround Car Value Prediction API. This app provides an endpoint to predict car values based on various features! Try it out πΉοΈ | |
## Machine Learning | |
This section includes a Machine Learning endpoint that predicts car values based on various features. Here is the endpoint: | |
* `/predict`: **POST** request that accepts a list of car features and returns a predicted car value. | |
Check out the documentation below π for more information on each endpoint. | |
""" | |
tags_metadata = [ | |
{ | |
"name": "Machine Learning", | |
"description": "Endpoint for predicting car values based on provided features." | |
} | |
] | |
app = FastAPI( | |
title="π GetAround Car Value Prediction API", | |
description=description, | |
version="0.1", | |
contact={ | |
"name": "Antoine VERDON", | |
"email": "[email protected]", # Replace with actual email | |
}, | |
openapi_tags=tags_metadata | |
) | |
class PredictionFeatures(BaseModel): | |
CarData: List[Union[str, int, bool]] = ["Renault", 193231, 85, "diesel", "black", "estate", False, True, False, False, False, False, True] | |
async def index(): | |
return "Hello world! This `/` is the most simple and default endpoint. If you want to learn more, check out documentation of the API at `/docs`" | |
async def predict(predictionFeatures: PredictionFeatures): | |
columns = [ | |
'model_key', 'mileage', 'engine_power', 'fuel', 'paint_color', | |
'car_type', 'private_parking_available', 'has_gps', | |
'has_air_conditioning', 'automatic_car', 'has_getaround_connect', | |
'has_speed_regulator', 'winter_tires' | |
] | |
car_data_dict = {col: [val] for col, val in zip(columns, predictionFeatures.CarData)} | |
car_data = pd.DataFrame(car_data_dict) | |
# model_file = hf_hub_download(repo_id="2nzi/GetAround-CarPrediction", filename="best_model_XGBoost.pkl") | |
# with open(model_file, 'rb') as f: | |
# model = pickle.load(f) | |
model = joblib.load('best_model_XGBoost.pkl') | |
prediction = model.predict(car_data) | |
response = {"prediction": prediction.tolist()[0]} | |
return response | |
if __name__=="__main__": | |
uvicorn.run(app, host="0.0.0.0", port=4000) | |