Spaces:
Sleeping
Sleeping
Add application file
Browse files- Dockerfile +16 -0
- main.py +68 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
+
|
12 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
13 |
+
|
14 |
+
COPY --chown=user . /app
|
15 |
+
|
16 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
import pandas as pd
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List, Union
|
5 |
+
from fastapi import FastAPI
|
6 |
+
import joblib
|
7 |
+
|
8 |
+
description = """
|
9 |
+
Welcome to the GetAround Car Value Prediction API. This app provides an endpoint to predict car values based on various features! Try it out 🕹️
|
10 |
+
|
11 |
+
## Machine Learning
|
12 |
+
|
13 |
+
This section includes a Machine Learning endpoint that predicts car values based on various features. Here is the endpoint:
|
14 |
+
|
15 |
+
* `/predict`: **POST** request that accepts a list of car features and returns a predicted car value.
|
16 |
+
|
17 |
+
Check out the documentation below 👇 for more information on each endpoint.
|
18 |
+
"""
|
19 |
+
|
20 |
+
tags_metadata = [
|
21 |
+
{
|
22 |
+
"name": "Machine Learning",
|
23 |
+
"description": "Endpoint for predicting car values based on provided features."
|
24 |
+
}
|
25 |
+
]
|
26 |
+
|
27 |
+
app = FastAPI(
|
28 |
+
title="🚗 GetAround Car Value Prediction API",
|
29 |
+
description=description,
|
30 |
+
version="0.1",
|
31 |
+
contact={
|
32 |
+
"name": "Antoine VERDON",
|
33 |
+
"email": "[email protected]", # Replace with actual email
|
34 |
+
},
|
35 |
+
openapi_tags=tags_metadata
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
class PredictionFeatures(BaseModel):
|
40 |
+
CarData: List[Union[str, int, bool]] = ["Renault", 193231, 85, "diesel", "black", "estate", False, True, False, False, False, False, True]
|
41 |
+
|
42 |
+
@app.get("/", tags=["Introduction Endpoints"])
|
43 |
+
async def index():
|
44 |
+
return "Hello world! This `/` is the most simple and default endpoint. If you want to learn more, check out documentation of the API at `/docs`"
|
45 |
+
|
46 |
+
@app.post("/predict", tags=["Machine Learning"])
|
47 |
+
async def predict(predictionFeatures: PredictionFeatures):
|
48 |
+
columns = [
|
49 |
+
'model_key', 'mileage', 'engine_power', 'fuel', 'paint_color',
|
50 |
+
'car_type', 'private_parking_available', 'has_gps',
|
51 |
+
'has_air_conditioning', 'automatic_car', 'has_getaround_connect',
|
52 |
+
'has_speed_regulator', 'winter_tires'
|
53 |
+
]
|
54 |
+
|
55 |
+
car_data_dict = {col: [val] for col, val in zip(columns, predictionFeatures.CarData)}
|
56 |
+
car_data = pd.DataFrame(car_data_dict)
|
57 |
+
|
58 |
+
# model_file = hf_hub_download(repo_id="2nzi/GetAround-CarPrediction", filename="best_model_XGBoost.pkl")
|
59 |
+
# with open(model_file, 'rb') as f:
|
60 |
+
# model = pickle.load(f)
|
61 |
+
|
62 |
+
model = joblib.load('best_model_XGBoost.pkl')
|
63 |
+
prediction = model.predict(car_data)
|
64 |
+
response = {"prediction": prediction.tolist()[0]}
|
65 |
+
return response
|
66 |
+
|
67 |
+
if __name__=="__main__":
|
68 |
+
uvicorn.run(app, host="0.0.0.0", port=4000)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
pandas
|
4 |
+
pydantic
|
5 |
+
joblib
|
6 |
+
scikit-learn
|