Spaces:
Running
Running
File size: 4,531 Bytes
7621729 8859b60 4f3aa82 7621729 8859b60 7621729 8859b60 4f3aa82 dcea9bb 8859b60 7621729 dcea9bb 010c9cb 7621729 dcea9bb 4f3aa82 dcea9bb 4f3aa82 8859b60 4f3aa82 dcea9bb 4f3aa82 8859b60 4f3aa82 8859b60 4f3aa82 7621729 4f3aa82 8859b60 4f3aa82 7621729 8859b60 4f3aa82 dcea9bb 7621729 010c9cb 8859b60 010c9cb 7621729 dcea9bb 010c9cb 7621729 4f3aa82 dcea9bb 010c9cb 8859b60 010c9cb 7621729 4f3aa82 dcea9bb 010c9cb 4f3aa82 8859b60 010c9cb dcea9bb 7621729 4f3aa82 dcea9bb 010c9cb 8859b60 010c9cb dcea9bb 8859b60 010c9cb dcea9bb 010c9cb dcea9bb 010c9cb dcea9bb 010c9cb dcea9bb 7621729 dcea9bb 8859b60 7621729 8859b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import logging
import asyncio
import numpy as np
import torch
import librosa
import soundfile as sf
from pydub import AudioSegment
from telegram import Update
from telegram.ext import ApplicationBuilder, MessageHandler, filters
from transformers import pipeline, AutoTokenizer, VitsModel
from huggingface_hub import login
# ===== تهيئة التوكن =====
login(token=os.getenv("HF_TOKEN"))
# ===== إعدادات النظام =====
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO
)
logger = logging.getLogger(__name__)
# ===== تحميل النماذج =====
try:
# 1. نموذج التعرف على الصوت (ASR)
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
token=os.getenv("HF_TOKEN")
)
# 2. نموذج توليف الصوت (TTS)
tts_tokenizer = AutoTokenizer.from_pretrained(
"facebook/mms-tts-ara",
token=os.getenv("HF_TOKEN")
)
tts_model = VitsModel.from_pretrained(
"facebook/mms-tts-ara",
token=os.getenv("HF_TOKEN")
)
except Exception as e:
logger.error(f"فشل تحميل النماذج: {str(e)}")
raise
# ===== دوال معالجة الصوت =====
def enhance_audio(input_path: str, output_path: str) -> bool:
"""تحسين جودة الملف الصوتي"""
try:
audio = AudioSegment.from_wav(input_path)
audio = audio.low_pass_filter(3000)
audio = audio.high_pass_filter(100)
audio = audio.normalize()
audio = audio.fade_in(150).fade_out(150)
audio.export(output_path, format="wav")
return True
except Exception as e:
logger.error(f"خطأ في تحسين الصوت: {str(e)}")
return False
async def speech_to_text(audio_path: str) -> str:
"""تحويل الصوت إلى نص"""
try:
audio, sr = librosa.load(audio_path, sr=16000)
sf.write("temp.wav", audio, sr)
result = asr_pipeline("temp.wav")
return result["text"]
except Exception as e:
logger.error(f"فشل التعرف على الصوت: {str(e)}")
return ""
async def generate_response(text: str) -> str:
"""توليد رد الذكاء الاصطناعي"""
try:
chatbot = pipeline(
"text-generation",
model="aubmindlab/aragpt2-base",
token=os.getenv("HF_TOKEN")
)
response = chatbot(
text,
max_length=100,
num_return_sequences=1,
pad_token_id=50256
)
return response[0]['generated_text']
except Exception as e:
logger.error(f"فشل توليد الرد: {str(e)}")
return "حدث خطأ في توليد الرد."
async def text_to_speech(text: str) -> None:
"""تحويل النص إلى صوت"""
try:
inputs = tts_tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = tts_model(**inputs)
waveform = output.waveform[0].numpy()
sf.write("bot_response.wav", waveform, tts_model.config.sampling_rate)
except Exception as e:
logger.error(f"فشل تحويل النص إلى صوت: {str(e)}")
# ===== الدالة الرئيسية =====
async def process_voice(update: Update, context):
try:
# تحميل الصوت
voice_file = await update.message.voice.get_file()
await voice_file.download_to_drive("user_voice.ogg")
# معالجة الصوت
user_text = await speech_to_text("user_voice.ogg")
bot_response = await generate_response(user_text)
await text_to_speech(bot_response)
# إرسال الرد
if enhance_audio("bot_response.wav", "bot_response_enhanced.wav"):
await update.message.reply_voice("bot_response_enhanced.wav")
else:
await update.message.reply_voice("bot_response.wav")
except Exception as e:
logger.error(f"خطأ غير متوقع: {str(e)}")
await update.message.reply_text("⚠️ عذرًا، حدث خطأ في المعالجة.")
# ===== التشغيل الرئيسي =====
async def main():
application = ApplicationBuilder().token(os.getenv("TELEGRAM_TOKEN")).build()
application.add_handler(MessageHandler(filters.VOICE, process_voice))
await application.run_polling()
if __name__ == "__main__":
asyncio.run(main()) |