File size: 7,594 Bytes
709ebd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
import os
from groq import Groq
from dotenv import load_dotenv
from PyPDF2 import PdfReader, PdfWriter
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from PIL import Image
# Load environment variables
load_dotenv()
# Initialize Groq API client
client = Groq(
api_key=os.environ.get("GROQ_API_KEY"), # Ensure this is defined in your .env file
)
# Function to summarize text using Groq API
def summarize_text_groq(input_text, model="llama-3.3-70b-versatile", max_tokens=150):
try:
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": f"Summarize the following text:\n\n{input_text}",
},
],
model=model,
)
return response.choices[0].message.content.strip()
except Exception as e:
raise RuntimeError(f"API call failed: {e}")
# Function to extract text from a PDF file
def extract_text_from_pdf(uploaded_pdf):
try:
pdf_reader = PdfReader(uploaded_pdf)
if pdf_reader.is_encrypted:
st.error("β The uploaded PDF is encrypted and cannot be processed.")
return ""
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or "" # Handle pages with no text gracefully
if not text.strip():
raise RuntimeError("No extractable text found in the PDF.")
return text
except Exception as e:
raise RuntimeError(f"Failed to extract text from PDF: {e}")
# Function to save summary as a PDF
def save_summary_to_pdf(summary_text):
try:
# Use BytesIO to create an in-memory PDF
summary_stream = BytesIO()
c = canvas.Canvas(summary_stream, pagesize=letter)
c.drawString(100, 750, "Summary:")
text_object = c.beginText(100, 730) # Start the text object at this position
text_object.setFont("Helvetica", 10)
# Split text into lines for better formatting
lines = summary_text.splitlines()
for line in lines:
text_object.textLine(line)
c.drawText(text_object)
c.save()
# Seek to the start of the BytesIO stream
summary_stream.seek(0)
return summary_stream
except Exception as e:
raise RuntimeError(f"Failed to save summary to PDF: {e}")
# Streamlit App Setup
st.set_page_config(page_title="Text Summarization App", page_icon="π", layout="wide")
st.title("π Text Summarization App with Groq API")
# Custom CSS styling
st.markdown("""
<style>
.main {
background-color: #f4f7fc;
padding: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
border: none;
padding: 15px 32px;
font-size: 16px;
cursor: pointer;
border-radius: 5px;
margin-top: 20px;
}
.stButton>button:hover {
background-color: #45a049;
}
.stTextInput>div>div>input {
font-size: 16px;
padding: 10px;
border-radius: 5px;
border: 1px solid #ccc;
}
</style>
""", unsafe_allow_html=True)
# Instructions or greeting
st.markdown("""
<div style="font-size: 18px; color: #444;">
Welcome to the Text Summarization App! You can enter text or upload a PDF to get a concise summary using Groq API. Feel free to explore the tabs below.
</div>
""", unsafe_allow_html=True)
# Tabs for manual text and PDF upload
tab1, tab2, tab3 = st.tabs(["Manual Text Input", "PDF Upload", "π£οΈ Chat with Bot"])
# Manual Text Input Tab
with tab1:
st.subheader("π Enter Your Text")
input_text = st.text_area("Enter the text to summarize", height=200, max_chars=2000)
if st.button("π Summarize Text"):
if input_text:
with st.spinner("Summarizing your text..."):
try:
summary = summarize_text_groq(input_text)
st.success("β
Summary:")
st.write(summary)
except Exception as e:
st.error(f"β An error occurred: {e}")
else:
st.warning("β οΈ Please enter some text to summarize!")
# PDF Upload Tab
with tab2:
st.subheader("π€ Upload a PDF for Summarization")
uploaded_pdf = st.file_uploader("Upload PDF", type=["pdf"])
if uploaded_pdf is not None:
with st.spinner("Extracting text from PDF..."):
try:
extracted_text = extract_text_from_pdf(uploaded_pdf)
st.success("β
Text extracted from PDF.")
st.text_area("π Extracted Text:", extracted_text, height=200)
if st.button("π Summarize PDF"):
with st.spinner("Summarizing the extracted text..."):
try:
summary = summarize_text_groq(extracted_text)
st.success("β
PDF Summary:")
st.write(summary)
# Save the summary to a new PDF
summary_pdf = save_summary_to_pdf(summary)
st.download_button(
label="πΎ Download Summary PDF",
data=summary_pdf,
file_name="summary.pdf",
mime="application/pdf",
)
except Exception as e:
st.error(f"β An error occurred: {e}")
except RuntimeError as e:
st.error(f"β {e}")
# Chat with Bot Tab
with tab3:
st.subheader("π£οΈ Chat with the Bot")
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "system", "content": "You are a helpful assistant."}]
# Display chat history
for message in st.session_state.messages:
if message["role"] == "user":
st.write(f"**User**: {message['content']}")
else:
st.write(f"**Bot**: {message['content']}")
user_input = st.text_input("Type your message:", "")
if st.button("Send Message"):
if user_input:
# Add user input to chat history
st.session_state.messages.append({"role": "user", "content": user_input})
# Get bot's response
with st.spinner("Bot is typing..."):
try:
response = client.chat.completions.create(
messages=st.session_state.messages,
model="llama-3.3-70b-versatile", # Groq model
)
bot_message = response.choices[0].message.content.strip()
# Add bot response to chat history
st.session_state.messages.append({"role": "assistant", "content": bot_message})
st.write(f"**Bot**: {bot_message}")
except Exception as e:
st.error(f"β An error occurred: {e}")
else:
st.warning("β οΈ Please enter a message to send.")
|