Upload 2 files
Browse files- requirements.txt +6 -0
- summarization_app.py +205 -0
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.9.0
|
2 |
+
groq==1.0.0
|
3 |
+
python-dotenv==0.20.0
|
4 |
+
PyPDF2==1.26.0
|
5 |
+
reportlab==3.6.2
|
6 |
+
Pillow==9.0.0
|
summarization_app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from groq import Groq
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from PyPDF2 import PdfReader, PdfWriter
|
6 |
+
from io import BytesIO
|
7 |
+
from reportlab.lib.pagesizes import letter
|
8 |
+
from reportlab.pdfgen import canvas
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Initialize Groq API client
|
15 |
+
client = Groq(
|
16 |
+
api_key=os.environ.get("GROQ_API_KEY"), # Ensure this is defined in your .env file
|
17 |
+
)
|
18 |
+
|
19 |
+
# Function to summarize text using Groq API
|
20 |
+
def summarize_text_groq(input_text, model="llama-3.3-70b-versatile", max_tokens=150):
|
21 |
+
try:
|
22 |
+
response = client.chat.completions.create(
|
23 |
+
messages=[
|
24 |
+
{
|
25 |
+
"role": "system",
|
26 |
+
"content": "You are a helpful assistant.",
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": f"Summarize the following text:\n\n{input_text}",
|
31 |
+
},
|
32 |
+
],
|
33 |
+
model=model,
|
34 |
+
)
|
35 |
+
return response.choices[0].message.content.strip()
|
36 |
+
except Exception as e:
|
37 |
+
raise RuntimeError(f"API call failed: {e}")
|
38 |
+
|
39 |
+
# Function to extract text from a PDF file
|
40 |
+
def extract_text_from_pdf(uploaded_pdf):
|
41 |
+
try:
|
42 |
+
pdf_reader = PdfReader(uploaded_pdf)
|
43 |
+
if pdf_reader.is_encrypted:
|
44 |
+
st.error("β The uploaded PDF is encrypted and cannot be processed.")
|
45 |
+
return ""
|
46 |
+
text = ""
|
47 |
+
for page in pdf_reader.pages:
|
48 |
+
text += page.extract_text() or "" # Handle pages with no text gracefully
|
49 |
+
if not text.strip():
|
50 |
+
raise RuntimeError("No extractable text found in the PDF.")
|
51 |
+
return text
|
52 |
+
except Exception as e:
|
53 |
+
raise RuntimeError(f"Failed to extract text from PDF: {e}")
|
54 |
+
|
55 |
+
# Function to save summary as a PDF
|
56 |
+
def save_summary_to_pdf(summary_text):
|
57 |
+
try:
|
58 |
+
# Use BytesIO to create an in-memory PDF
|
59 |
+
summary_stream = BytesIO()
|
60 |
+
c = canvas.Canvas(summary_stream, pagesize=letter)
|
61 |
+
c.drawString(100, 750, "Summary:")
|
62 |
+
text_object = c.beginText(100, 730) # Start the text object at this position
|
63 |
+
text_object.setFont("Helvetica", 10)
|
64 |
+
|
65 |
+
# Split text into lines for better formatting
|
66 |
+
lines = summary_text.splitlines()
|
67 |
+
for line in lines:
|
68 |
+
text_object.textLine(line)
|
69 |
+
|
70 |
+
c.drawText(text_object)
|
71 |
+
c.save()
|
72 |
+
|
73 |
+
# Seek to the start of the BytesIO stream
|
74 |
+
summary_stream.seek(0)
|
75 |
+
return summary_stream
|
76 |
+
except Exception as e:
|
77 |
+
raise RuntimeError(f"Failed to save summary to PDF: {e}")
|
78 |
+
|
79 |
+
# Streamlit App Setup
|
80 |
+
st.set_page_config(page_title="Text Summarization App", page_icon="π", layout="wide")
|
81 |
+
st.title("π Text Summarization App with Groq API")
|
82 |
+
|
83 |
+
# Custom CSS styling
|
84 |
+
st.markdown("""
|
85 |
+
<style>
|
86 |
+
.main {
|
87 |
+
background-color: #f4f7fc;
|
88 |
+
padding: 20px;
|
89 |
+
}
|
90 |
+
.stButton>button {
|
91 |
+
background-color: #4CAF50;
|
92 |
+
color: white;
|
93 |
+
border: none;
|
94 |
+
padding: 15px 32px;
|
95 |
+
font-size: 16px;
|
96 |
+
cursor: pointer;
|
97 |
+
border-radius: 5px;
|
98 |
+
margin-top: 20px;
|
99 |
+
}
|
100 |
+
.stButton>button:hover {
|
101 |
+
background-color: #45a049;
|
102 |
+
}
|
103 |
+
.stTextInput>div>div>input {
|
104 |
+
font-size: 16px;
|
105 |
+
padding: 10px;
|
106 |
+
border-radius: 5px;
|
107 |
+
border: 1px solid #ccc;
|
108 |
+
}
|
109 |
+
</style>
|
110 |
+
""", unsafe_allow_html=True)
|
111 |
+
|
112 |
+
# Instructions or greeting
|
113 |
+
st.markdown("""
|
114 |
+
<div style="font-size: 18px; color: #444;">
|
115 |
+
Welcome to the Text Summarization App! You can enter text or upload a PDF to get a concise summary using Groq API. Feel free to explore the tabs below.
|
116 |
+
</div>
|
117 |
+
""", unsafe_allow_html=True)
|
118 |
+
|
119 |
+
# Tabs for manual text and PDF upload
|
120 |
+
tab1, tab2, tab3 = st.tabs(["Manual Text Input", "PDF Upload", "π£οΈ Chat with Bot"])
|
121 |
+
|
122 |
+
# Manual Text Input Tab
|
123 |
+
with tab1:
|
124 |
+
st.subheader("π Enter Your Text")
|
125 |
+
input_text = st.text_area("Enter the text to summarize", height=200, max_chars=2000)
|
126 |
+
if st.button("π Summarize Text"):
|
127 |
+
if input_text:
|
128 |
+
with st.spinner("Summarizing your text..."):
|
129 |
+
try:
|
130 |
+
summary = summarize_text_groq(input_text)
|
131 |
+
st.success("β
Summary:")
|
132 |
+
st.write(summary)
|
133 |
+
except Exception as e:
|
134 |
+
st.error(f"β An error occurred: {e}")
|
135 |
+
else:
|
136 |
+
st.warning("β οΈ Please enter some text to summarize!")
|
137 |
+
|
138 |
+
# PDF Upload Tab
|
139 |
+
with tab2:
|
140 |
+
st.subheader("π€ Upload a PDF for Summarization")
|
141 |
+
uploaded_pdf = st.file_uploader("Upload PDF", type=["pdf"])
|
142 |
+
if uploaded_pdf is not None:
|
143 |
+
with st.spinner("Extracting text from PDF..."):
|
144 |
+
try:
|
145 |
+
extracted_text = extract_text_from_pdf(uploaded_pdf)
|
146 |
+
st.success("β
Text extracted from PDF.")
|
147 |
+
st.text_area("π Extracted Text:", extracted_text, height=200)
|
148 |
+
|
149 |
+
if st.button("π Summarize PDF"):
|
150 |
+
with st.spinner("Summarizing the extracted text..."):
|
151 |
+
try:
|
152 |
+
summary = summarize_text_groq(extracted_text)
|
153 |
+
st.success("β
PDF Summary:")
|
154 |
+
st.write(summary)
|
155 |
+
|
156 |
+
# Save the summary to a new PDF
|
157 |
+
summary_pdf = save_summary_to_pdf(summary)
|
158 |
+
st.download_button(
|
159 |
+
label="πΎ Download Summary PDF",
|
160 |
+
data=summary_pdf,
|
161 |
+
file_name="summary.pdf",
|
162 |
+
mime="application/pdf",
|
163 |
+
)
|
164 |
+
except Exception as e:
|
165 |
+
st.error(f"β An error occurred: {e}")
|
166 |
+
except RuntimeError as e:
|
167 |
+
st.error(f"β {e}")
|
168 |
+
|
169 |
+
# Chat with Bot Tab
|
170 |
+
with tab3:
|
171 |
+
st.subheader("π£οΈ Chat with the Bot")
|
172 |
+
if "messages" not in st.session_state:
|
173 |
+
st.session_state.messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
174 |
+
|
175 |
+
# Display chat history
|
176 |
+
for message in st.session_state.messages:
|
177 |
+
if message["role"] == "user":
|
178 |
+
st.write(f"**User**: {message['content']}")
|
179 |
+
else:
|
180 |
+
st.write(f"**Bot**: {message['content']}")
|
181 |
+
|
182 |
+
user_input = st.text_input("Type your message:", "")
|
183 |
+
|
184 |
+
if st.button("Send Message"):
|
185 |
+
if user_input:
|
186 |
+
# Add user input to chat history
|
187 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
188 |
+
|
189 |
+
# Get bot's response
|
190 |
+
with st.spinner("Bot is typing..."):
|
191 |
+
try:
|
192 |
+
response = client.chat.completions.create(
|
193 |
+
messages=st.session_state.messages,
|
194 |
+
model="llama-3.3-70b-versatile", # Groq model
|
195 |
+
)
|
196 |
+
bot_message = response.choices[0].message.content.strip()
|
197 |
+
|
198 |
+
# Add bot response to chat history
|
199 |
+
st.session_state.messages.append({"role": "assistant", "content": bot_message})
|
200 |
+
|
201 |
+
st.write(f"**Bot**: {bot_message}")
|
202 |
+
except Exception as e:
|
203 |
+
st.error(f"β An error occurred: {e}")
|
204 |
+
else:
|
205 |
+
st.warning("β οΈ Please enter a message to send.")
|