See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fbd16596dc609498_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fbd16596dc609498_train_data.json
type:
field_input: Option 1
field_instruction: Domain
field_output: Question
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: sniperfix/9709c534-9bca-44a1-b6fd-785aec8ec3d1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 90
micro_batch_size: 2
mlflow_experiment_name: /tmp/fbd16596dc609498_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: indexjupri-sniper-country
wandb_mode: online
wandb_name: 7f264b18-8600-4682-ae3a-1dbab5576cea
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7f264b18-8600-4682-ae3a-1dbab5576cea
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
9709c534-9bca-44a1-b6fd-785aec8ec3d1
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 90
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0245 | 1 | 4.6041 |
4.3828 | 0.1957 | 8 | 3.3236 |
2.2216 | 0.3914 | 16 | 2.0753 |
1.9273 | 0.5872 | 24 | 1.8967 |
1.8009 | 0.7829 | 32 | 1.8258 |
1.758 | 0.9786 | 40 | 1.7899 |
1.5393 | 1.1781 | 48 | 1.7905 |
1.5202 | 1.3739 | 56 | 1.7881 |
1.5214 | 1.5696 | 64 | 1.7926 |
1.5097 | 1.7653 | 72 | 1.7805 |
1.4725 | 1.9610 | 80 | 1.7794 |
1.2638 | 2.1606 | 88 | 1.7813 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.