Yi-Ko-34B-Q8_0-GGUF / README.md
skraparks's picture
Upload README.md with huggingface_hub
8468b04 verified
metadata
extra_gated_heading: Access beomi/Yi-Ko-34B on Hugging Face
extra_gated_button_content: Submit
extra_gated_fields:
  I agree to share my name, email address and username: checkbox
  I confirm that I understand this project is for research purposes only, and confirm that I agree to follow the LICENSE of this model: checkbox
language:
  - en
  - ko
pipeline_tag: text-generation
inference: false
tags:
  - pytorch
  - Yi-Ko
  - 01-ai
  - Yi
  - llama-cpp
  - gguf-my-repo
library_name: transformers
license: apache-2.0
base_model: beomi/Yi-Ko-34B

skraparks/Yi-Ko-34B-Q8_0-GGUF

This model was converted to GGUF format from beomi/Yi-Ko-34B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo skraparks/Yi-Ko-34B-Q8_0-GGUF --hf-file yi-ko-34b-q8_0.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo skraparks/Yi-Ko-34B-Q8_0-GGUF --hf-file yi-ko-34b-q8_0.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo skraparks/Yi-Ko-34B-Q8_0-GGUF --hf-file yi-ko-34b-q8_0.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo skraparks/Yi-Ko-34B-Q8_0-GGUF --hf-file yi-ko-34b-q8_0.gguf -c 2048