Add pipeline tag, link to code and paper (#1)
Browse files- Add pipeline tag, link to code and paper (9ed7049e49cccf9a11e9c2c2f9e45e3c0210164b)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
-
base_model: mistralai/Mistral-7B-v0.1
|
5 |
tags:
|
6 |
- alignment-handbook
|
7 |
- generated_from_trainer
|
8 |
-
|
9 |
-
- siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320
|
10 |
model-index:
|
11 |
- name: mistral-feedbuhcp2-dft-lr2e-6-tau1.0-u_init0-s2-e2-gamma0.85
|
12 |
results: []
|
13 |
---
|
14 |
|
15 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
-
|
18 |
# Mistral-7B-DFT
|
19 |
|
20 |
-
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320 dataset.
|
|
|
|
|
21 |
|
22 |
### Training hyperparameters
|
23 |
|
@@ -42,3 +42,39 @@ The following hyperparameters were used during training:
|
|
42 |
- Pytorch 2.1.2+cu121
|
43 |
- Datasets 3.0.1
|
44 |
- Tokenizers 0.20.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: mistralai/Mistral-7B-v0.1
|
3 |
+
datasets:
|
4 |
+
- siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320
|
5 |
library_name: transformers
|
6 |
license: apache-2.0
|
|
|
7 |
tags:
|
8 |
- alignment-handbook
|
9 |
- generated_from_trainer
|
10 |
+
pipeline_tag: text-generation
|
|
|
11 |
model-index:
|
12 |
- name: mistral-feedbuhcp2-dft-lr2e-6-tau1.0-u_init0-s2-e2-gamma0.85
|
13 |
results: []
|
14 |
---
|
15 |
|
|
|
|
|
|
|
16 |
# Mistral-7B-DFT
|
17 |
|
18 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320 dataset. It was finetuned as part of the paper [Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data](https://arxiv.org/abs/2502.18679)
|
19 |
+
|
20 |
+
The code is available at https://github.com/PenGuln/DFT.
|
21 |
|
22 |
### Training hyperparameters
|
23 |
|
|
|
42 |
- Pytorch 2.1.2+cu121
|
43 |
- Datasets 3.0.1
|
44 |
- Tokenizers 0.20.1
|
45 |
+
|
46 |
+
### Usage Example
|
47 |
+
|
48 |
+
The model can be used for text generation tasks. A basic example using the `transformers` library is shown below:
|
49 |
+
|
50 |
+
```python
|
51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
52 |
+
import torch
|
53 |
+
|
54 |
+
model_id = "siqi00/Mistral-7B-DFT"
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
57 |
+
|
58 |
+
prompt = "What is the capital of France?"
|
59 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
60 |
+
generation_config = GenerationConfig(max_new_tokens=20, temperature=0.7)
|
61 |
+
outputs = model.generate(inputs["input_ids"], generation_config=generation_config)
|
62 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
+
print(generated_text)
|
64 |
+
```
|
65 |
+
|
66 |
+
Remember to install the necessary libraries (`pip install transformers`) and adjust parameters like `temperature` and `max_new_tokens` to fine-tune generation.
|
67 |
+
|
68 |
+
## Citation
|
69 |
+
|
70 |
+
```bibtex
|
71 |
+
@misc{guo2025discriminativefinetuninggenerativelarge,
|
72 |
+
title={Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data},
|
73 |
+
author={Siqi Guo and Ilgee Hong and Vicente Balmaseda and Tuo Zhao and Tianbao Yang},
|
74 |
+
year={2025},
|
75 |
+
eprint={2502.18679},
|
76 |
+
archivePrefix={arXiv},
|
77 |
+
primaryClass={cs.CL},
|
78 |
+
url={https://arxiv.org/abs/2502.18679},
|
79 |
+
}
|
80 |
+
```
|