Mistral-7B-DFT
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320 dataset. It was finetuned as part of the paper Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data
The code is available at https://github.com/PenGuln/DFT.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.2+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
Usage Example
The model can be used for text generation tasks. A basic example using the transformers
library is shown below:
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
model_id = "siqi00/Mistral-7B-DFT"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
prompt = "What is the capital of France?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
generation_config = GenerationConfig(max_new_tokens=20, temperature=0.7)
outputs = model.generate(inputs["input_ids"], generation_config=generation_config)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
Remember to install the necessary libraries (pip install transformers
) and adjust parameters like temperature
and max_new_tokens
to fine-tune generation.
Citation
@misc{guo2025discriminativefinetuninggenerativelarge,
title={Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data},
author={Siqi Guo and Ilgee Hong and Vicente Balmaseda and Tuo Zhao and Tianbao Yang},
year={2025},
eprint={2502.18679},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.18679},
}
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.