|
--- |
|
widget: |
|
- text: Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi. |
|
example_title: Example 1 |
|
- text: >- |
|
Shu munosabat bilan O‘zbekiston Prezidenti global inqiroz sharoitida savdo-iqtisodiy hamkorlikni <mask> va hududlararo aloqalarni rivojlantirishning muhim masalalariga to‘xtalib o‘tdi. |
|
example_title: Example 2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- sinonimayzer/mixed-data |
|
language: |
|
- uz |
|
library_name: transformers |
|
pipeline_tag: fill-mask |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# UzRoBERTa-v2 |
|
|
|
This model achieves the following results on the evaluation set: |
|
- Loss: 1.9097 |
|
|
|
## How to use |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='sinonimayzer/UzRoBERTa-v2') |
|
>>> unmasker("Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi.") |
|
|
|
[{'score': 0.3318027853965759, |
|
'token': 4877, |
|
'token_str': ' hududlarda', |
|
'sequence': 'Kuchli yomg‘irlar tufayli bir qator hududlarda kuchli sel oqishi kuzatildi.'}, |
|
{'score': 0.13175441324710846, |
|
'token': 14470, |
|
'token_str': ' viloyatlarda', |
|
'sequence': 'Kuchli yomg‘irlar tufayli bir qator viloyatlarda kuchli sel oqishi kuzatildi.'}, |
|
{'score': 0.09735308587551117, |
|
'token': 13555, |
|
'token_str': ' tumanlarda', |
|
'sequence': 'Kuchli yomg‘irlar tufayli bir qator tumanlarda kuchli sel oqishi kuzatildi.'}, |
|
{'score': 0.09112472087144852, |
|
'token': 12261, |
|
'token_str': ' shaharlarda', |
|
'sequence': 'Kuchli yomg‘irlar tufayli bir qator shaharlarda kuchli sel oqishi kuzatildi.'}, |
|
{'score': 0.05940879508852959, |
|
'token': 2767, |
|
'token_str': ' joylarda', |
|
'sequence': 'Kuchli yomg‘irlar tufayli bir qator joylarda kuchli sel oqishi kuzatildi.'}] |
|
|
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 92 |
|
- eval_batch_size: 92 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 500000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:------:|:---------------:| |
|
| 2.3673 | 0.25 | 100000 | 2.4588 | |
|
| 2.0797 | 0.51 | 200000 | 2.1653 | |
|
| 1.9369 | 0.76 | 300000 | 2.0265 | |
|
| 1.8545 | 1.02 | 400000 | 1.9456 | |
|
| 1.8133 | 1.27 | 500000 | 1.9101 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |