| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- GUI agents | 
					
					
						
						| 
							 | 
						- vision-language-action model | 
					
					
						
						| 
							 | 
						- computer use | 
					
					
						
						| 
							 | 
						base_model: | 
					
					
						
						| 
							 | 
						- Qwen/Qwen2-VL-2B-Instruct | 
					
					
						
						| 
							 | 
						license: mit | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						[Github](https://github.com/showlab/ShowUI/tree/main) | [arXiv](https://arxiv.org/abs/2411.17465) | [HF Paper](https://huggingface.co/papers/2411.17465) | [Spaces](https://huggingface.co/spaces/showlab/ShowUI) | [Datasets](https://huggingface.co/datasets/showlab/ShowUI-desktop-8K) | [Quick Start](https://huggingface.co/showlab/ShowUI-2B)  | 
					
					
						
						| 
							 | 
						<img src="examples/showui.jpg" alt="ShowUI" width="640"> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						ShowUI is a lightweight (2B) vision-language-action model designed for GUI agents. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🤗 Try our HF Space Demo | 
					
					
						
						| 
							 | 
						https://huggingface.co/spaces/showlab/ShowUI | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## ⭐ Quick Start | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						1. Load model | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						import ast | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from PIL import Image, ImageDraw | 
					
					
						
						| 
							 | 
						from qwen_vl_utils import process_vision_info | 
					
					
						
						| 
							 | 
						from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def draw_point(image_input, point=None, radius=5): | 
					
					
						
						| 
							 | 
						    if isinstance(image_input, str): | 
					
					
						
						| 
							 | 
						        image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        image = image_input | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    if point: | 
					
					
						
						| 
							 | 
						        x, y = point[0] * image.width, point[1] * image.height | 
					
					
						
						| 
							 | 
						        ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | 
					
					
						
						| 
							 | 
						    display(image) | 
					
					
						
						| 
							 | 
						    return | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						model = Qwen2VLForConditionalGeneration.from_pretrained( | 
					
					
						
						| 
							 | 
						    "showlab/ShowUI-2B", | 
					
					
						
						| 
							 | 
						    torch_dtype=torch.bfloat16, | 
					
					
						
						| 
							 | 
						    device_map="auto" | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						min_pixels = 256*28*28 | 
					
					
						
						| 
							 | 
						max_pixels = 1344*28*28 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						processor = AutoProcessor.from_pretrained("showlab/ShowUI-2B", min_pixels=min_pixels, max_pixels=max_pixels) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						2. **UI Grounding** | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						img_url = 'examples/web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png' | 
					
					
						
						| 
							 | 
						query = "Nahant" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | 
					
					
						
						| 
							 | 
						messages = [ | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "role": "user", | 
					
					
						
						| 
							 | 
						        "content": [ | 
					
					
						
						| 
							 | 
						            {"type": "text", "text": _SYSTEM}, | 
					
					
						
						| 
							 | 
						            {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, | 
					
					
						
						| 
							 | 
						            {"type": "text", "text": query} | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						text = processor.apply_chat_template( | 
					
					
						
						| 
							 | 
						    messages, tokenize=False, add_generation_prompt=True, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						image_inputs, video_inputs = process_vision_info(messages) | 
					
					
						
						| 
							 | 
						inputs = processor( | 
					
					
						
						| 
							 | 
						    text=[text], | 
					
					
						
						| 
							 | 
						    images=image_inputs, | 
					
					
						
						| 
							 | 
						    videos=video_inputs, | 
					
					
						
						| 
							 | 
						    padding=True, | 
					
					
						
						| 
							 | 
						    return_tensors="pt", | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						inputs = inputs.to("cuda") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						generated_ids = model.generate(**inputs, max_new_tokens=128) | 
					
					
						
						| 
							 | 
						generated_ids_trimmed = [ | 
					
					
						
						| 
							 | 
						    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						output_text = processor.batch_decode( | 
					
					
						
						| 
							 | 
						    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | 
					
					
						
						| 
							 | 
						)[0] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						click_xy = ast.literal_eval(output_text) | 
					
					
						
						| 
							 | 
						# [0.73, 0.21] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						draw_point(img_url, click_xy, 10) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This will visualize the grounding results like (where the red points are [x,y]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						3. **UI Navigation** | 
					
					
						
						| 
							 | 
						- Set up system prompt. | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						_NAV_SYSTEM = """You are an assistant trained to navigate the {_APP} screen.  | 
					
					
						
						| 
							 | 
						Given a task instruction, a screen observation, and an action history sequence,  | 
					
					
						
						| 
							 | 
						output the next action and wait for the next observation.  | 
					
					
						
						| 
							 | 
						Here is the action space: | 
					
					
						
						| 
							 | 
						{_ACTION_SPACE} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						_NAV_FORMAT = """ | 
					
					
						
						| 
							 | 
						Format the action as a dictionary with the following keys: | 
					
					
						
						| 
							 | 
						{'action': 'ACTION_TYPE', 'value': 'element', 'position': [x,y]} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						If value or position is not applicable, set it as `None`. | 
					
					
						
						| 
							 | 
						Position might be [[x1,y1], [x2,y2]] if the action requires a start and end position. | 
					
					
						
						| 
							 | 
						Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						action_map = { | 
					
					
						
						| 
							 | 
						'web': """ | 
					
					
						
						| 
							 | 
						1. `CLICK`: Click on an element, value is not applicable and the position [x,y] is required.  | 
					
					
						
						| 
							 | 
						2. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required.  | 
					
					
						
						| 
							 | 
						3. `SELECT`: Select a value for an element, value is not applicable and the position [x,y] is required.  | 
					
					
						
						| 
							 | 
						4. `HOVER`: Hover on an element, value is not applicable and the position [x,y] is required. | 
					
					
						
						| 
							 | 
						5. `ANSWER`: Answer the question, value is the answer and the position is not applicable. | 
					
					
						
						| 
							 | 
						6. `ENTER`: Enter operation, value and position are not applicable. | 
					
					
						
						| 
							 | 
						7. `SCROLL`: Scroll the screen, value is the direction to scroll and the position is not applicable. | 
					
					
						
						| 
							 | 
						8. `SELECT_TEXT`: Select some text content, value is not applicable and position [[x1,y1], [x2,y2]] is the start and end position of the select operation. | 
					
					
						
						| 
							 | 
						9. `COPY`: Copy the text, value is the text to copy and the position is not applicable. | 
					
					
						
						| 
							 | 
						""", | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						'phone': """ | 
					
					
						
						| 
							 | 
						1. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required.  | 
					
					
						
						| 
							 | 
						2. `SWIPE`: Swipe the screen, value is not applicable and the position [[x1,y1], [x2,y2]] is the start and end position of the swipe operation. | 
					
					
						
						| 
							 | 
						3. `TAP`: Tap on an element, value is not applicable and the position [x,y] is required. | 
					
					
						
						| 
							 | 
						4. `ANSWER`: Answer the question, value is the status (e.g., 'task complete') and the position is not applicable. | 
					
					
						
						| 
							 | 
						5. `ENTER`: Enter operation, value and position are not applicable. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						img_url = 'examples/chrome.png' | 
					
					
						
						| 
							 | 
						split='web' | 
					
					
						
						| 
							 | 
						system_prompt = _NAV_SYSTEM.format(_APP=split, _ACTION_SPACE=action_map[split]) + _NAV_FORMAT | 
					
					
						
						| 
							 | 
						query = "Search the weather for the New York city." | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						messages = [ | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "role": "user", | 
					
					
						
						| 
							 | 
						        "content": [ | 
					
					
						
						| 
							 | 
						            {"type": "text", "text": system_prompt}, | 
					
					
						
						| 
							 | 
						            {"type": "text", "text": f'Task: {query}'}, | 
					
					
						
						| 
							 | 
						            # {"type": "text", "text": PAST_ACTION}, | 
					
					
						
						| 
							 | 
						            {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						text = processor.apply_chat_template( | 
					
					
						
						| 
							 | 
						    messages, tokenize=False, add_generation_prompt=True, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						image_inputs, video_inputs = process_vision_info(messages) | 
					
					
						
						| 
							 | 
						inputs = processor( | 
					
					
						
						| 
							 | 
						    text=[text], | 
					
					
						
						| 
							 | 
						    images=image_inputs, | 
					
					
						
						| 
							 | 
						    videos=video_inputs, | 
					
					
						
						| 
							 | 
						    padding=True, | 
					
					
						
						| 
							 | 
						    return_tensors="pt", | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						inputs = inputs.to("cuda") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						generated_ids = model.generate(**inputs, max_new_tokens=128) | 
					
					
						
						| 
							 | 
						generated_ids_trimmed = [ | 
					
					
						
						| 
							 | 
						    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						output_text = processor.batch_decode( | 
					
					
						
						| 
							 | 
						    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | 
					
					
						
						| 
							 | 
						)[0] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						print(output_text) | 
					
					
						
						| 
							 | 
						# {'action': 'CLICK', 'value': None, 'position': [0.49, 0.42]}, | 
					
					
						
						| 
							 | 
						# {'action': 'INPUT', 'value': 'weather for New York city', 'position': [0.49, 0.42]}, | 
					
					
						
						| 
							 | 
						# {'action': 'ENTER', 'value': None, 'position': None} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						If you find our work helpful, please consider citing our paper. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						@misc{lin2024showui, | 
					
					
						
						| 
							 | 
						      title={ShowUI: One Vision-Language-Action Model for GUI Visual Agent},  | 
					
					
						
						| 
							 | 
						      author={Kevin Qinghong Lin and Linjie Li and Difei Gao and Zhengyuan Yang and Shiwei Wu and Zechen Bai and Weixian Lei and Lijuan Wang and Mike Zheng Shou}, | 
					
					
						
						| 
							 | 
						      year={2024}, | 
					
					
						
						| 
							 | 
						      eprint={2411.17465}, | 
					
					
						
						| 
							 | 
						      archivePrefix={arXiv}, | 
					
					
						
						| 
							 | 
						      primaryClass={cs.CV}, | 
					
					
						
						| 
							 | 
						      url={https://arxiv.org/abs/2411.17465},  | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` |