|
--- |
|
license: mit |
|
base_model: HuggingFaceH4/zephyr-7b-beta |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: zephyr-7b-sft-lora-accum4-lr5e_5-dpo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zephyr-7b-sft-lora-accum4-lr5e_5-dpo |
|
|
|
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5041 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 30.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.5276 | 0.55 | 13 | 1.4329 | |
|
| 1.352 | 1.57 | 27 | 1.2406 | |
|
| 1.1329 | 2.55 | 40 | 1.0909 | |
|
| 1.0628 | 3.57 | 54 | 1.0299 | |
|
| 1.0022 | 4.55 | 67 | 0.9812 | |
|
| 0.957 | 5.57 | 81 | 0.9445 | |
|
| 0.9148 | 6.55 | 94 | 0.8948 | |
|
| 0.8443 | 7.57 | 108 | 0.8432 | |
|
| 0.7645 | 8.55 | 121 | 0.7847 | |
|
| 0.6952 | 9.57 | 135 | 0.7192 | |
|
| 0.639 | 10.55 | 148 | 0.6671 | |
|
| 0.5683 | 11.57 | 162 | 0.6112 | |
|
| 0.5223 | 12.55 | 175 | 0.5777 | |
|
| 0.4958 | 13.57 | 189 | 0.5592 | |
|
| 0.4592 | 14.55 | 202 | 0.5381 | |
|
| 0.4602 | 15.57 | 216 | 0.5100 | |
|
| 0.4486 | 16.55 | 229 | 0.5117 | |
|
| 0.4274 | 17.57 | 243 | 0.5084 | |
|
| 0.4239 | 18.55 | 256 | 0.4909 | |
|
| 0.4055 | 19.57 | 270 | 0.5006 | |
|
| 0.3931 | 20.55 | 283 | 0.4959 | |
|
| 0.3986 | 21.57 | 297 | 0.4853 | |
|
| 0.3977 | 22.55 | 310 | 0.4859 | |
|
| 0.3936 | 23.57 | 324 | 0.4974 | |
|
| 0.3821 | 24.55 | 337 | 0.4952 | |
|
| 0.3877 | 25.57 | 351 | 0.4949 | |
|
| 0.3681 | 26.55 | 364 | 0.4866 | |
|
| 0.3681 | 27.57 | 378 | 0.4926 | |
|
| 0.371 | 28.55 | 391 | 0.4817 | |
|
| 0.3604 | 29.57 | 405 | 0.4923 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|