BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("shivamsharma1967/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Table of Contents\nAMAZON.COM, INC.\nCONSOLIDATED STATEMENTS OF OPERATIONS\n(in millions, except per share data)\n \n \nYear Ended December 31,\n \n2015\n \n2016\n \n2017\nNet product sales\n$\n79,268 $\n94,665 $\n118,573\nNet service sales\n27,738 \n41,322 \n59,293\nTotal net sales\n107,006 \n135,987 \n177,866\nOperating expenses:\n \n \n \nCost of sales\n71,651 \n88,265 \n111,934\nFulfillment\n13,410 \n17,619 \n25,249\nMarketing\n5,254 \n7,233 \n10,069\nTechnology and content\n12,540 \n16,085 \n22,620\nGeneral and administrative\n1,747 \n2,432 \n3,674\nOther operating expense, net\n171 \n167 \n214\nTotal operating expenses\n104,773 \n131,801 \n173,760\nOperating income\n2,233 \n4,186 \n4,106\nInterest income\n50 \n100 \n202\nInterest expense\n(459) \n(484) \n(848)\nOther income (expense), net\n(256) \n90 \n346\nTotal non-operating income (expense)\n(665) \n(294) \n(300)\nIncome before income taxes\n1,568 \n3,892 \n3,806\nProvision for income taxes\n(950) \n(1,425) \n(769)\nEquity-method investment activity, net of tax\n(22) \n(96) \n(4)\nNet income\n$\n596 $\n2,371 $\n3,033\nBasic earnings per share\n$\n1.28 $\n5.01 $\n6.32\nDiluted earnings per share\n$\n1.25 $\n4.90 $\n6.15\nWeighted-average shares used in computation of earnings per share:\n \n \n \nBasic\n467 \n474 \n480\nDiluted\n477 \n484 \n493\nSee accompanying notes to consolidated financial statements.\n38\nTable of Contents\nAMAZON.COM, INC.\nCONSOLIDATED STATEMENTS OF OPERATIONS\n(in millions, except per share data)\n \n \nYear Ended December 31,\n \n2015\n \n2016\n \n2017\nNet product sales\n$\n79,268 $\n94,665 $\n118,573\nNet service sales\n27,738 \n41,322 \n59,293\nTotal net sales\n107,006 \n135,987 \n177,866\nOperating expenses:\n \n \n \nCost of sales\n71,651 \n88,265 \n111,934\nFulfillment\n13,410 \n17,619 \n25,249\nMarketing\n5,254 \n7,233 \n10,069\nTechnology and content\n12,540 \n16,085 \n22,620\nGeneral and administrative\n1,747 \n2,432 \n3,674\nOther operating expense, net\n171 \n167 \n214\nTotal operating expenses\n104,773 \n131,801 \n173,760\nOperating income\n2,233 \n4,186 \n4,106\nInterest income\n50 \n100 \n202\nInterest expense\n(459) \n(484) \n(848)\nOther income (expense), net\n(256) \n90 \n346\nTotal non-operating income (expense)\n(665) \n(294) \n(300)\nIncome before income taxes\n1,568 \n3,892 \n3,806\nProvision for income taxes\n(950) \n(1,425) \n(769)\nEquity-method investment activity, net of tax\n(22) \n(96) \n(4)\nNet income\n$\n596 $\n2,371 $\n3,033\nBasic earnings per share\n$\n1.28 $\n5.01 $\n6.32\nDiluted earnings per share\n$\n1.25 $\n4.90 $\n6.15\nWeighted-average shares used in computation of earnings per share:\n \n \n \nBasic\n467 \n474 \n480\nDiluted\n477 \n484 \n493\nSee accompanying notes to consolidated financial statements.\n38',
"What is Amazon's year-over-year change in revenue from FY2016 to FY2017 (in units of percents and round to one decimal place)? Calculate what was asked by utilizing the line items clearly shown in the statement of income.",
'What is the FY2018 - FY2020 3 year average of capex as a % of revenue for MGM Resorts? Answer in units of percents and round to one decimal place. Please utilize information provided primarily within the statement of cash flows and the statement of income.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.4 | 0.2667 | 0.2 | 0.2 | 0.2667 |
cosine_accuracy@3 | 0.4667 | 0.4667 | 0.4 | 0.3333 | 0.2667 |
cosine_accuracy@5 | 0.5333 | 0.5333 | 0.4 | 0.4 | 0.3333 |
cosine_accuracy@10 | 0.6667 | 0.6667 | 0.6 | 0.5333 | 0.4667 |
cosine_precision@1 | 0.4 | 0.2667 | 0.2 | 0.2 | 0.2667 |
cosine_precision@3 | 0.1556 | 0.1556 | 0.1333 | 0.1111 | 0.0889 |
cosine_precision@5 | 0.1067 | 0.1067 | 0.08 | 0.08 | 0.0667 |
cosine_precision@10 | 0.0667 | 0.0667 | 0.06 | 0.0533 | 0.0467 |
cosine_recall@1 | 0.4 | 0.2667 | 0.2 | 0.2 | 0.2667 |
cosine_recall@3 | 0.4667 | 0.4667 | 0.4 | 0.3333 | 0.2667 |
cosine_recall@5 | 0.5333 | 0.5333 | 0.4 | 0.4 | 0.3333 |
cosine_recall@10 | 0.6667 | 0.6667 | 0.6 | 0.5333 | 0.4667 |
cosine_ndcg@10 | 0.5029 | 0.4537 | 0.374 | 0.346 | 0.3413 |
cosine_mrr@10 | 0.4541 | 0.3874 | 0.3051 | 0.2883 | 0.304 |
cosine_map@100 | 0.467 | 0.4024 | 0.3253 | 0.306 | 0.322 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 135 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 135 samples:
positive anchor type string string details - min: 359 tokens
- mean: 508.73 tokens
- max: 512 tokens
- min: 11 tokens
- mean: 39.7 tokens
- max: 175 tokens
- Samples:
positive anchor Twelve Months Ended June 30, 2022
Twelve Months Ended June 30, 2023
($ million)
EBITDA
EBIT
Net
Income
EPS
(Diluted
US
cents)(1)
EBITDA
EBIT
Net
Income
EPS
(Diluted
US
cents)(1)
Net income attributable to Amcor
805
805
805
52.9
1,048
1,048
1,048
70.5
Net income attributable to non-controlling
interests
10
10
10
10
Tax expense
300
300
193
193
Interest expense, net
135
135
259
259
Depreciation and amortization
579
569
EBITDA, EBIT, Net income and EPS
1,829
1,250
805
52.9
2,080
1,510
1,048
70.5
2019 Bemis Integration Plan
37
37
37
2.5
Net loss on disposals(2)
10
10
10
0.7
Impact of hyperinflation
16
16
16
1.0
24
24
24
1.9
Property and other losses, net(3)
13
13
13
0.8
2
2
2
0.1
Russia-Ukraine conflict impacts(4)
200
200
200
13.2
(90)
(90)
(90)
(6.0)
Pension settlements
8...What Was AMCOR's Adjusted Non GAAP EBITDA for FY 2023
SQUARE,INC.
CONSOLIDATEDBALANCESHEETS
(In thousands, except share and per share data)
December31,
2016
2015
Assets
Currentassets:
Cashandcashequivalents
$
452,030 $
461,329
Short-terminvestments
59,901
Restrictedcash
22,131
13,537
Settlementsreceivable
321,102
142,727
Customerfundsheld
43,574
9,446
Loansheldforsale
42,144
604
Merchantcashadvancereceivable,net
4,212
36,473
Othercurrentassets
56,331
41,447
Totalcurrentassets
1,001,425
705,563
Propertyandequipment,net
88,328
87,222
Goodwill
57,173
56,699
Acquiredintangibleassets,net
19,292
26,776
Long-terminvestments
27,366
Restrictedcash
14,584
14,686
Otherassets
3,194
3,826
Totalassets
$
1,211,362 $
894,772
LiabilitiesandStockholdersEquity
Currentliabilities:
Accountspayable
$
12,602 $
18,869
Customerspayable
388,058
215,365
Customerfundsobligation
43,574
9,446
Accruedtransactionlosses
20,064
17,176
Accruedexpenses
39,543
44,401
Othercurrentliabilities
73,623
28,945
Totalcurrentliabilities
577,464
33...Considering the data in the balance sheet, what is Block's (formerly known as Square) FY2016 working capital ratio? Define working capital ratio as total current assets divided by total current liabilities. Round your answer to two decimal places.
Consolidated Balance Sheets
Verizon Communications Inc. and Subsidiaries
(dollars in millions, except per share amounts)
At December 31,
2022
2021
Assets
Current assets
Cash and cash equivalents
$
2,605
$
2,921
Accounts receivable
25,332
24,742
Less Allowance for credit losses
826
896
Accounts receivable, net
24,506
23,846
Inventories
2,388
3,055
Prepaid expenses and other
8,358
6,906
Total current assets
37,857
36,728
Property, plant and equipment
307,689
289,897
Less Accumulated depreciation
200,255
190,201
Property, plant and equipment, net
107,434
99,696
Investments in unconsolidated businesses
1,071
1,061
Wireless licenses
149,796
147,619
Goodwill
28,671
28,603
Other intangible assets, net
11,461
11,677
Operating lease right-of-use assets
26,130
27,883
Other assets
17,260
13,329
Total assets
$
379,680
$
366,596
Liabilities and Equity
Current liabilities
Debt maturing within o...Does Verizon have a reasonably healthy liquidity profile based on its quick ratio for FY 2022? If the quick ratio is not relevant to measure liquidity, please state that and explain why.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
0 | 0 | 0.5029 | 0.4537 | 0.374 | 0.346 | 0.3413 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for shivamsharma1967/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.400
- Cosine Accuracy@3 on dim 768self-reported0.467
- Cosine Accuracy@5 on dim 768self-reported0.533
- Cosine Accuracy@10 on dim 768self-reported0.667
- Cosine Precision@1 on dim 768self-reported0.400
- Cosine Precision@3 on dim 768self-reported0.156
- Cosine Precision@5 on dim 768self-reported0.107
- Cosine Precision@10 on dim 768self-reported0.067
- Cosine Recall@1 on dim 768self-reported0.400
- Cosine Recall@3 on dim 768self-reported0.467