SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("shivXy/ot-midterm-v0")
# Run inference
sentences = [
'1. What was the focus of the pilot study mentioned regarding tendinosis of the Achilles tendon?',
'tendinosis of the Achilles tendon: a pilot study. AJR Am J Roentgenol . \n2007;189:W215–W220 . \n74. van Leeuwen WF , Janssen SJ , Ring D , Chen N . Incidental magnetic resonance \nimaging signal changes in the extensor carpi radialis brevis origin are more \ncommon with age. J Shoulder Elbow Surg . 2016;25:1175–1181 . \n75. Rabago D , Lee KS , Ryan M , et al. Hypertonic dextrose and morrhuate sodium \ninjections (prolotherapy) for lateral epicondylosis (tennis elbow): results of a \nsingle-blind, pilot-level, randomized controlled trial. Am J Phys Med Rehabil . \n2013;92:587–596 . \n76. Scarpone M , Rabago DP , Zgierska A , Arbogast G , Snell E . The efficacy \nof prolotherapy for lateral epicondylosis: a pilot study. Clin J Sport Med .',
'179. Dick FD , Graveling RA , Munro W , Walker-Bone K . Workplace management of \nupper limb disorders: a systematic review. Occup Med (Lond) . 2011;61:19–25 . \n180. Buchanan H , Van Niekerk L , Grimmer K . Work transition after hand injury: a \nscoping review. J Hand Ther . 2020 . \n181. Rost KA , Alvero AM . Participatory approaches to workplace safety man- \nagement: bridging the gap between behavioral safety and participatory er- \ngonomics. Int J Occup Saf Ergon . 2020;26:194–203 . \n182. Bernardes JM , Ruiz-Frutos C , Moro ARP , Dias A . A low-cost and efficient par- \nticipatory ergonomic intervention to reduce the burden of work-related mus- \nculoskeletal disorders in an industrially developing country: an experience re-',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9545 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9545 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9545 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9832 |
cosine_mrr@10 | 0.9773 |
cosine_map@100 | 0.9773 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 812 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 812 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 24.85 tokens
- max: 60 tokens
- min: 8 tokens
- mean: 158.41 tokens
- max: 320 tokens
- Samples:
sentence_0 sentence_1 2. What type of intervention is being compared to strength training in the study protocol by Sundstrup E and colleagues?
ment for work-related lateral epicondylitis. Work . 2010;37:81–86 .
161. Parimalam P , Premalatha MR , Padmini DS , Ganguli AK . Participatory er-
gonomics in redesigning a dyeing tub for fabric dyers. Work . 2012;43:453–458 .
162. Harari D , Casarotto RA . Effectiveness of a multifaceted intervention to manage
musculoskeletal disorders in workers of a medium-sized company. Int J Occup
Saf Ergon . 2021;27:247–257 .
163. Sundstrup E , Jakobsen MD , Andersen CH , et al. Participatory ergonomic inter-
vention versus strength training on chronic pain and work disability in slaugh-
terhouse workers: study protocol for a single-blind, randomized controlled
trial. BMC Musculoskelet Disord . 2013;14:67 .2. What does the increased signal intensity in the proximal portion of the lateral collateral ligament suggest about the patient's condition?
266 C.W. Stegink-Jansen, J.G. Bynum, A.L. Lambropoulos et al. / Journal of Hand Therapy 34 (2021) 263–297
Fig. 3. Pathology. A 60-year-old female with right elbow pain for 5 weeks. (A) Coronal fat-suppressed FSE T2-weighted image showing mild thickening of the proximal
portion of the common extensor tendon with increased signal intensity (arrow), suggesting mild injury. Irregular thickening with increased signal intensity in the proximal
portion of the lateral collateral ligament (arrowhead) is also noted, suggesting mild injury. (B) and (C) Coronal PD FSE image and oblique radiograph showing cortical2. What factors are assessed in relation to lower extremity (LE) issues according to the systematic review?
Manufacturing:
• Electronics
• Auto parts
• Windows
• Cabinets
• Medical equipment
• Fitness equipment
Healthcare (excluding direct
patient care):
• Hospitals
• Health research
Worker: structured interviews,
physical examinations
Environment: workplace walk
through
Hazards in work: individual
assessments of biomechanical and
psychosocial factors
LE related to frequency of forceful
exertions or forearm supination and
forceful lifting; increased odds of LE
related to being age 36-50, female,
or a smoker; high social support
appeared protective against LE
van Rijn et al. 2009 Assess relationship between
work-related physical factors,
psychosocial factors, and LE
Systematic review
13 studies:
• 9 cross-sectional - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.6098 | 50 | - | 1.0 |
1.0 | 82 | - | 0.9773 |
1.2195 | 100 | - | 0.9664 |
1.8293 | 150 | - | 1.0 |
2.0 | 164 | - | 0.9832 |
2.4390 | 200 | - | 0.9832 |
3.0 | 246 | - | 0.9832 |
3.0488 | 250 | - | 0.9832 |
3.6585 | 300 | - | 0.9832 |
4.0 | 328 | - | 0.9832 |
4.2683 | 350 | - | 0.9832 |
4.8780 | 400 | - | 0.9832 |
5.0 | 410 | - | 0.9832 |
5.4878 | 450 | - | 0.9832 |
6.0 | 492 | - | 0.9832 |
6.0976 | 500 | 0.6578 | 0.9832 |
6.7073 | 550 | - | 0.9664 |
7.0 | 574 | - | 0.9664 |
7.3171 | 600 | - | 0.9664 |
7.9268 | 650 | - | 0.9664 |
8.0 | 656 | - | 0.9664 |
8.5366 | 700 | - | 0.9832 |
9.0 | 738 | - | 0.9832 |
9.1463 | 750 | - | 0.9832 |
9.7561 | 800 | - | 0.9832 |
10.0 | 820 | - | 0.9832 |
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cpu
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 82
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for shivXy/ot-midterm-v0
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.955
- Cosine Accuracy@3 on Unknownself-reported1.000
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.955
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.955
- Cosine Recall@3 on Unknownself-reported1.000