|
--- |
|
license: mit |
|
base_model: |
|
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2 |
|
--- |
|
|
|
# protestforms_mpnet-base-v2 |
|
|
|
This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
It was trained on a manually annotated dataset of German newspaper articles containing information on protest forms. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["At 8pm protesters gathered on the main square and shouted 'end fossil fuels'", "The German government demonstrated composure in its reaction to social media posts"] |
|
|
|
model = SentenceTransformer('{MODEL_NAME}') |
|
embeddings = model.encode(sentences) |
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["At 8pm protesters gathered on the main square and shouted 'end fossil fuels'", "The German government demonstrated composure in its reaction to social media posts"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('shaunss/protestforms_mpnet-base-v2') |
|
model = AutoModel.from_pretrained('shaunss/protestforms_mpnet-base-v2') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
``` |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
<!--- t.b.d. --> |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 681 with parameters: |
|
``` |
|
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.BatchSemiHardTripletLoss.BatchSemiHardTripletLoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 10, |
|
"evaluation_steps": 2177.5, |
|
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 2177.5, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |