sgangireddy's picture
update model card README.md
0ff8416
|
raw
history blame
2.03 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - multilingual_librispeech
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: multilingual_librispeech
          type: multilingual_librispeech
          config: italian
          split: test
          args: italian
        metrics:
          - name: Wer
            type: wer
            value: 8.335297167365791

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the multilingual_librispeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2051
  • Wer: 8.3353

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1115 1.02 1000 0.2116 9.4217
0.0867 2.03 2000 0.1964 9.7823
0.0447 3.05 3000 0.2001 9.6409
0.0426 4.07 4000 0.2051 8.3353

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2