results / README.md
sert121's picture
defog-orpo-model-8B-v4
dfdee00 verified
|
raw
history blame
3.43 kB
metadata
base_model: defog/llama-3-sqlcoder-8b
library_name: peft
license: cc-by-sa-4.0
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: results
    results: []

Visualize in Weights & Biases

results

This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1487
  • Rewards/chosen: -0.0059
  • Rewards/rejected: -0.0256
  • Rewards/accuracies: 0.9037
  • Rewards/margins: 0.0197
  • Logps/rejected: -0.2555
  • Logps/chosen: -0.0585
  • Logits/rejected: 0.2408
  • Logits/chosen: 0.2329
  • Nll Loss: 0.1244
  • Log Odds Ratio: -0.2414
  • Log Odds Chosen: 1.5632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
0.6997 0.4 144 0.6765 -0.0517 -0.0564 0.8447 0.0047 -0.5638 -0.5169 -0.1910 -0.1941 0.6134 -0.6250 0.1486
0.206 0.8 288 0.1943 -0.0081 -0.0186 0.8975 0.0105 -0.1858 -0.0809 0.0507 0.0486 0.1574 -0.3672 0.9122
0.1531 1.2 432 0.1592 -0.0064 -0.0245 0.9068 0.0182 -0.2452 -0.0637 0.2239 0.2196 0.1331 -0.2599 1.4386
0.1424 1.6 576 0.1510 -0.0060 -0.0257 0.8975 0.0197 -0.2569 -0.0597 0.2172 0.2093 0.1265 -0.2436 1.5494
0.1291 2.0 720 0.1487 -0.0059 -0.0256 0.9037 0.0197 -0.2555 -0.0585 0.2408 0.2329 0.1244 -0.2414 1.5632

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.1
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1