DeBERTaV3_model_V5
This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1164
- Accuracy: 0.9652
- F1: 0.8192
- Precision: 0.8524
- Recall: 0.7885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 182 | 0.2809 | 0.9 | 0.0 | 0.0 | 0.0 |
No log | 2.0 | 364 | 0.2176 | 0.9216 | 0.4027 | 0.8451 | 0.2643 |
0.2842 | 3.0 | 546 | 0.1558 | 0.9493 | 0.7074 | 0.8373 | 0.6123 |
0.2842 | 4.0 | 728 | 0.1302 | 0.9568 | 0.7742 | 0.8116 | 0.7401 |
0.2842 | 5.0 | 910 | 0.1164 | 0.9652 | 0.8192 | 0.8524 | 0.7885 |
0.1025 | 6.0 | 1092 | 0.1193 | 0.9634 | 0.8135 | 0.8303 | 0.7974 |
0.1025 | 7.0 | 1274 | 0.1242 | 0.9648 | 0.8214 | 0.8326 | 0.8106 |
0.1025 | 8.0 | 1456 | 0.1266 | 0.9626 | 0.8098 | 0.8227 | 0.7974 |
0.0376 | 9.0 | 1638 | 0.1259 | 0.9648 | 0.8206 | 0.8356 | 0.8062 |
0.0376 | 10.0 | 1820 | 0.1269 | 0.9661 | 0.8285 | 0.8378 | 0.8194 |
0.023 | 11.0 | 2002 | 0.1290 | 0.9661 | 0.8293 | 0.8348 | 0.8238 |
0.023 | 12.0 | 2184 | 0.1312 | 0.9630 | 0.8150 | 0.8150 | 0.8150 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for sergiomvazq/DeBERTaV3_model_V5
Base model
microsoft/deberta-v3-small