Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-dbrx
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b866ad9e4e386fec_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b866ad9e4e386fec_train_data.json
  type:
    field_instruction: input
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sergioalves/9812eaf0-36f3-403b-9916-5144d881052d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/b866ad9e4e386fec_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_hf
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 431071e9-0bc5-4fab-8a40-d926c1b7180d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 431071e9-0bc5-4fab-8a40-d926c1b7180d
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

9812eaf0-36f3-403b-9916-5144d881052d

This model is a fine-tuned version of katuni4ka/tiny-random-dbrx on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 11.5
46.0 0.0003 5 11.5
46.0 0.0005 10 11.5
46.0 0.0008 15 11.5

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for sergioalves/9812eaf0-36f3-403b-9916-5144d881052d

Adapter
(211)
this model