sercetexam9's picture
Training completed!
f37ef52 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: roberta-large-finetuned-augmentation-LUNAR-TAPT
    results: []

roberta-large-finetuned-augmentation-LUNAR-TAPT

This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4897
  • F1: 0.8302
  • Roc Auc: 0.8696
  • Accuracy: 0.6338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3371 1.0 317 0.3025 0.7356 0.8000 0.5233
0.2571 2.0 634 0.3055 0.7376 0.7942 0.5572
0.1848 3.0 951 0.2850 0.7964 0.8431 0.5912
0.124 4.0 1268 0.3223 0.7738 0.8164 0.5635
0.0701 5.0 1585 0.3219 0.8091 0.8597 0.5951
0.0491 6.0 1902 0.3576 0.8148 0.8547 0.6014
0.0432 7.0 2219 0.3808 0.8216 0.8665 0.6196
0.0352 8.0 2536 0.3945 0.8278 0.8721 0.6259
0.0282 9.0 2853 0.4357 0.8173 0.8580 0.6054
0.012 10.0 3170 0.4670 0.8208 0.8679 0.5951
0.0054 11.0 3487 0.4864 0.8177 0.8599 0.6038
0.0029 12.0 3804 0.4882 0.8289 0.8687 0.6259
0.0011 13.0 4121 0.4897 0.8302 0.8696 0.6338
0.0012 14.0 4438 0.5079 0.8273 0.8680 0.6251
0.0008 15.0 4755 0.5146 0.8285 0.8688 0.6227
0.0007 16.0 5072 0.5100 0.8282 0.8693 0.6338
0.0008 17.0 5389 0.5158 0.8282 0.8673 0.6330

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0