roberta-large-finetuned-augmentation-LUNAR-TAPT-DAIR

This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3531
  • F1: 0.8753
  • Roc Auc: 0.9173
  • Accuracy: 0.7721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2394 1.0 627 0.2378 0.7928 0.8559 0.6579
0.2141 2.0 1254 0.2185 0.8216 0.8747 0.6850
0.1336 3.0 1881 0.2149 0.8388 0.8913 0.7150
0.1087 4.0 2508 0.2141 0.8479 0.8978 0.7357
0.0701 5.0 3135 0.2390 0.8499 0.8992 0.7361
0.065 6.0 3762 0.2600 0.8483 0.9022 0.7377
0.0518 7.0 4389 0.2756 0.8593 0.9038 0.7425
0.0307 8.0 5016 0.2917 0.8598 0.9050 0.7497
0.0227 9.0 5643 0.3293 0.8559 0.9062 0.7433
0.0131 10.0 6270 0.3357 0.8598 0.9005 0.7577
0.0068 11.0 6897 0.3465 0.8654 0.9109 0.7569
0.0014 12.0 7524 0.3500 0.8711 0.9116 0.7641
0.0009 13.0 8151 0.3531 0.8753 0.9173 0.7721
0.0013 14.0 8778 0.3676 0.8718 0.9188 0.7681
0.0004 15.0 9405 0.3715 0.8748 0.9165 0.7725
0.0012 16.0 10032 0.3709 0.8745 0.9172 0.7737
0.0008 17.0 10659 0.3775 0.8734 0.9182 0.7717

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
12
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sercetexam9/roberta-large-finetuned-augmentation-LUNAR-TAPT-DAIR

Finetuned
(336)
this model