bert-base-chinese-chn-finetuned-augmentation-LUNAR

This model is a fine-tuned version of google-bert/bert-base-chinese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2282
  • F1: 0.7890
  • Roc Auc: 0.8637
  • Accuracy: 0.7323

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2216 1.0 315 0.2200 0.5555 0.7352 0.5949
0.1695 2.0 630 0.1692 0.6542 0.7784 0.6839
0.1031 3.0 945 0.1674 0.6900 0.8028 0.6926
0.0671 4.0 1260 0.1707 0.7356 0.8239 0.7085
0.0415 5.0 1575 0.1884 0.7489 0.8419 0.7014
0.0289 6.0 1890 0.1993 0.7604 0.8532 0.6998
0.0204 7.0 2205 0.2331 0.7568 0.8558 0.6791
0.014 8.0 2520 0.2070 0.7714 0.8467 0.7149
0.0069 9.0 2835 0.2256 0.7823 0.8684 0.7053
0.0055 10.0 3150 0.2207 0.7839 0.8611 0.7260
0.0064 11.0 3465 0.2197 0.7875 0.8597 0.7252
0.0061 12.0 3780 0.2282 0.7890 0.8637 0.7323
0.0046 13.0 4095 0.2316 0.7865 0.8584 0.7284
0.0022 14.0 4410 0.2339 0.7763 0.8519 0.7307
0.0025 15.0 4725 0.2339 0.7800 0.8536 0.7315
0.0028 16.0 5040 0.2328 0.7802 0.8537 0.7299

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
16
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sercetexam9/bert-base-chinese-chn-finetuned-augmentation-LUNAR

Finetuned
(157)
this model
Finetunes
1 model