bert-base-chinese-chn-finetuned-augmentation-LUNAR
This model is a fine-tuned version of google-bert/bert-base-chinese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2282
- F1: 0.7890
- Roc Auc: 0.8637
- Accuracy: 0.7323
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.2216 | 1.0 | 315 | 0.2200 | 0.5555 | 0.7352 | 0.5949 |
0.1695 | 2.0 | 630 | 0.1692 | 0.6542 | 0.7784 | 0.6839 |
0.1031 | 3.0 | 945 | 0.1674 | 0.6900 | 0.8028 | 0.6926 |
0.0671 | 4.0 | 1260 | 0.1707 | 0.7356 | 0.8239 | 0.7085 |
0.0415 | 5.0 | 1575 | 0.1884 | 0.7489 | 0.8419 | 0.7014 |
0.0289 | 6.0 | 1890 | 0.1993 | 0.7604 | 0.8532 | 0.6998 |
0.0204 | 7.0 | 2205 | 0.2331 | 0.7568 | 0.8558 | 0.6791 |
0.014 | 8.0 | 2520 | 0.2070 | 0.7714 | 0.8467 | 0.7149 |
0.0069 | 9.0 | 2835 | 0.2256 | 0.7823 | 0.8684 | 0.7053 |
0.0055 | 10.0 | 3150 | 0.2207 | 0.7839 | 0.8611 | 0.7260 |
0.0064 | 11.0 | 3465 | 0.2197 | 0.7875 | 0.8597 | 0.7252 |
0.0061 | 12.0 | 3780 | 0.2282 | 0.7890 | 0.8637 | 0.7323 |
0.0046 | 13.0 | 4095 | 0.2316 | 0.7865 | 0.8584 | 0.7284 |
0.0022 | 14.0 | 4410 | 0.2339 | 0.7763 | 0.8519 | 0.7307 |
0.0025 | 15.0 | 4725 | 0.2339 | 0.7800 | 0.8536 | 0.7315 |
0.0028 | 16.0 | 5040 | 0.2328 | 0.7802 | 0.8537 | 0.7299 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.