apepkuss79's picture
Update README.md
03c91ed verified
metadata
base_model: jinaai/jina-embeddings-v2-base-en
license: apache-2.0
model_creator: jinaai
quantized_by: Second State Inc.
language: en
inference: false

jina-embeddings-v2-base-en-GGUF

Original Model

jinaai/jina-embeddings-v2-base-en

Run with LlamaEdge

  • LlamaEdge version: v0.14.17

  • Prompt template

    • Prompt type: embedding
  • Context size: 8192

  • Embedding dim: 768

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:jina-embeddings-v2-base-en-f16.gguf \
      llama-api-server.wasm \
      --prompt-template embedding \
      --ctx-size 8192 \
      --model-name jina-embeddings-v2-base-en
    

Quantized GGUF Models

Name Quant method Bits Size Use case
jina-embeddings-v2-base-en-Q2_K.gguf Q2_K 2 61.7 MB smallest, significant quality loss - not recommended for most purposes
jina-embeddings-v2-base-en-Q3_K_L.gguf Q3_K_L 3 79.8 MB small, substantial quality loss
jina-embeddings-v2-base-en-Q3_K_M.gguf Q3_K_M 3 74.7 MB very small, high quality loss
jina-embeddings-v2-base-en-Q3_K_S.gguf Q3_K_S 3 68.9 MB very small, high quality loss
jina-embeddings-v2-base-en-Q4_0.gguf Q4_0 4 83.9 MB legacy; small, very high quality loss - prefer using Q3_K_M
jina-embeddings-v2-base-en-Q4_K_M.gguf Q4_K_M 4 88.5 MB medium, balanced quality - recommended
jina-embeddings-v2-base-en-Q4_K_S.gguf Q4_K_S 4 84.5 MB small, greater quality loss
jina-embeddings-v2-base-en-Q5_0.gguf Q5_0 5 98.1 MB legacy; medium, balanced quality - prefer using Q4_K_M
jina-embeddings-v2-base-en-Q5_K_M.gguf Q5_K_M 5 100 MB large, very low quality loss - recommended
jina-embeddings-v2-base-en-Q5_K_S.gguf Q5_K_S 5 98.1 MB large, low quality loss - recommended
jina-embeddings-v2-base-en-Q6_K.gguf Q6_K 6 113 MB very large, extremely low quality loss
jina-embeddings-v2-base-en-Q8_0.gguf Q8_0 8 146 MB very large, extremely low quality loss - not recommended
jina-embeddings-v2-base-en-f16.gguf f16 16 274 MB very large, extremely low quality loss - not recommended

Quantized with llama.cpp b4273