ChatAllInOne-Yi-34B-200K-V1-GGUF
Original Model
DrNicefellow/ChatAllInOne-Yi-34B-200K-V1
Run with LlamaEdge
LlamaEdge version: coming soon
Prompt template
Prompt type:
vicuna-1.1-chat
Prompt string
USER: {prompt} ASSISTANT:
Context size:
7168
Quantized GGUF Models
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
ChatAllInOne-Yi-34B-200K-V1-Q2_K.gguf | Q2_K | 2 | 12.8 GB | smallest, significant quality loss - not recommended for most purposes |
ChatAllInOne-Yi-34B-200K-V1-Q3_K_L.gguf | Q3_K_L | 3 | 18.1 GB | small, substantial quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q3_K_M.gguf | Q3_K_M | 3 | 16.7 GB | very small, high quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q3_K_S.gguf | Q3_K_S | 3 | 15 GB | very small, high quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q4_0.gguf | Q4_0 | 4 | 19.5 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
ChatAllInOne-Yi-34B-200K-V1-Q4_K_M.gguf | Q4_K_M | 4 | 20.7 GB | medium, balanced quality - recommended |
ChatAllInOne-Yi-34B-200K-V1-Q4_K_S.gguf | Q4_K_S | 4 | 19.6 GB | small, greater quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q5_0.gguf | Q5_0 | 5 | 23.7 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
ChatAllInOne-Yi-34B-200K-V1-Q5_K_M.gguf | Q5_K_M | 5 | 24.3 GB | large, very low quality loss - recommended |
ChatAllInOne-Yi-34B-200K-V1-Q5_K_S.gguf | Q5_K_S | 5 | 23.7 GB | large, low quality loss - recommended |
ChatAllInOne-Yi-34B-200K-V1-Q6_K.gguf | Q6_K | 6 | 28.2 GB | very large, extremely low quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q8_0.gguf | Q8_0 | 8 | 36.5 GB | very large, extremely low quality loss - not recommended |
Quantized with llama.cpp b2334
- Downloads last month
- 57
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for second-state/ChatAllInOne-Yi-34B-200K-V1-GGUF
Base model
DrNicefellow/ChatAllInOne-Yi-34B-200K-V1