diff --git "a/falcon_edge_3b_lm_head.mlmodelc/model.mil" "b/falcon_edge_3b_lm_head.mlmodelc/model.mil" new file mode 100644--- /dev/null +++ "b/falcon_edge_3b_lm_head.mlmodelc/model.mil" @@ -0,0 +1,6084 @@ +program(1.3) +[buildInfo = dict({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}})] +{ + func lm_head_length_1(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_16")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_17")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_18")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_19")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_20")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_21")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_22")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_23")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_24")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_25")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_26")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_27")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_28")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_29")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_30")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_31")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func lm_head_length_128(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_112")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_113")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_114")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_115")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_116")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_117")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_118")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_119")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_120")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_121")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_122")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_123")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_124")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_125")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_126")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_127")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func lm_head_length_16(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_48")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_49")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_50")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_51")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_52")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_53")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_54")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_55")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_56")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_57")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_58")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_59")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_60")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_61")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_62")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_63")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func lm_head_length_32(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_64")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_65")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_66")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_67")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_68")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_69")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_70")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_71")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_72")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_73")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_74")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_75")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_76")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_77")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_78")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_79")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func lm_head_length_48(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_80")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_81")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_82")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_83")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_84")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_85")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_86")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_87")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_88")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_89")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_90")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_91")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_92")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_93")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_94")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_95")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func lm_head_length_64(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_96")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_97")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_98")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_99")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_100")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_101")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_102")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_103")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_104")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_105")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_106")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_107")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_108")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_109")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_110")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_111")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func lm_head_length_8(tensor hidden_states) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_32")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_33")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_34")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_35")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_36")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_37")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_38")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_39")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_40")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_41")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_42")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_43")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_44")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_45")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_46")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_47")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func main(tensor hidden_states) [FlexibleShapeInformation = tuple>>, tuple>>>>((("DefaultShapes", {{"hidden_states", [1, 2048, 1, 1]}}), ("EnumeratedShapes", {{"00cbfba1", {{"hidden_states", [1, 2048, 1, 128]}}}, {"67738071", {{"hidden_states", [1, 2048, 1, 48]}}}, {"6f8a4ce5", {{"hidden_states", [1, 2048, 1, 8]}}}, {"744d043e", {{"hidden_states", [1, 2048, 1, 64]}}}, {"956807f6", {{"hidden_states", [1, 2048, 1, 16]}}}, {"ae87ff54", {{"hidden_states", [1, 2048, 1, 32]}}}, {"c695af0b", {{"hidden_states", [1, 2048, 1, 1]}}}})))] { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_1 = const()[name = string("final_norm_rmsnorm_maxval_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_1 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_1, keep_dims = final_norm_rmsnorm_maxval_keep_dims_1, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_1"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_1 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_1"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_1, beta = final_norm_rmsnorm_maxval_clipped_beta_1, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_1 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_1"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_1 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_1"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_1, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_1, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_1 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_1"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_1, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_1 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_1"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_1)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_1 = const()[name = string("final_norm_rmsnorm_y_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_1)[name = string("final_norm_rmsnorm")]; + tensor logits_chunk_0_weight_1 = const()[name = string("logits_chunk_0_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_1 = const()[name = string("logits_chunk_0_strides_1"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_1 = const()[name = string("logits_chunk_0_pad_type_1"), val = string("valid")]; + tensor logits_chunk_0_pad_1 = const()[name = string("logits_chunk_0_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_1 = const()[name = string("logits_chunk_0_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_1 = const()[name = string("logits_chunk_0_groups_1"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_1, groups = logits_chunk_0_groups_1, pad = logits_chunk_0_pad_1, pad_type = logits_chunk_0_pad_type_1, strides = logits_chunk_0_strides_1, weight = logits_chunk_0_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + int32 argmax_chunk_0_axis_0 = const()[name = string("argmax_chunk_0_axis_0"), val = int32(1)]; + bool argmax_chunk_0_keep_dims_0 = const()[name = string("argmax_chunk_0_keep_dims_0"), val = bool(true)]; + string argmax_chunk_0_output_dtype_0 = const()[name = string("argmax_chunk_0_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_0 = reduce_argmax(axis = argmax_chunk_0_axis_0, keep_dims = argmax_chunk_0_keep_dims_0, output_dtype = argmax_chunk_0_output_dtype_0, x = logits_chunk_0)[name = string("argmax_chunk_0")]; + tensor max_chunk_0_axes_0 = const()[name = string("max_chunk_0_axes_0"), val = tensor([1])]; + bool max_chunk_0_keep_dims_0 = const()[name = string("max_chunk_0_keep_dims_0"), val = bool(true)]; + tensor max_chunk_0 = reduce_max(axes = max_chunk_0_axes_0, keep_dims = max_chunk_0_keep_dims_0, x = logits_chunk_0)[name = string("max_chunk_0")]; + tensor logits_chunk_1_weight_1 = const()[name = string("logits_chunk_1_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_1 = const()[name = string("logits_chunk_1_strides_1"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_1 = const()[name = string("logits_chunk_1_pad_type_1"), val = string("valid")]; + tensor logits_chunk_1_pad_1 = const()[name = string("logits_chunk_1_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_1 = const()[name = string("logits_chunk_1_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_1 = const()[name = string("logits_chunk_1_groups_1"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_1, groups = logits_chunk_1_groups_1, pad = logits_chunk_1_pad_1, pad_type = logits_chunk_1_pad_type_1, strides = logits_chunk_1_strides_1, weight = logits_chunk_1_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + int32 argmax_chunk_1_axis_0 = const()[name = string("argmax_chunk_1_axis_0"), val = int32(1)]; + bool argmax_chunk_1_keep_dims_0 = const()[name = string("argmax_chunk_1_keep_dims_0"), val = bool(true)]; + string argmax_chunk_1_output_dtype_0 = const()[name = string("argmax_chunk_1_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_1 = reduce_argmax(axis = argmax_chunk_1_axis_0, keep_dims = argmax_chunk_1_keep_dims_0, output_dtype = argmax_chunk_1_output_dtype_0, x = logits_chunk_1)[name = string("argmax_chunk_1")]; + tensor max_chunk_1_axes_0 = const()[name = string("max_chunk_1_axes_0"), val = tensor([1])]; + bool max_chunk_1_keep_dims_0 = const()[name = string("max_chunk_1_keep_dims_0"), val = bool(true)]; + tensor max_chunk_1 = reduce_max(axes = max_chunk_1_axes_0, keep_dims = max_chunk_1_keep_dims_0, x = logits_chunk_1)[name = string("max_chunk_1")]; + tensor logits_chunk_2_weight_1 = const()[name = string("logits_chunk_2_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_1 = const()[name = string("logits_chunk_2_strides_1"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_1 = const()[name = string("logits_chunk_2_pad_type_1"), val = string("valid")]; + tensor logits_chunk_2_pad_1 = const()[name = string("logits_chunk_2_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_1 = const()[name = string("logits_chunk_2_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_1 = const()[name = string("logits_chunk_2_groups_1"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_1, groups = logits_chunk_2_groups_1, pad = logits_chunk_2_pad_1, pad_type = logits_chunk_2_pad_type_1, strides = logits_chunk_2_strides_1, weight = logits_chunk_2_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + int32 argmax_chunk_2_axis_0 = const()[name = string("argmax_chunk_2_axis_0"), val = int32(1)]; + bool argmax_chunk_2_keep_dims_0 = const()[name = string("argmax_chunk_2_keep_dims_0"), val = bool(true)]; + string argmax_chunk_2_output_dtype_0 = const()[name = string("argmax_chunk_2_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_2 = reduce_argmax(axis = argmax_chunk_2_axis_0, keep_dims = argmax_chunk_2_keep_dims_0, output_dtype = argmax_chunk_2_output_dtype_0, x = logits_chunk_2)[name = string("argmax_chunk_2")]; + tensor max_chunk_2_axes_0 = const()[name = string("max_chunk_2_axes_0"), val = tensor([1])]; + bool max_chunk_2_keep_dims_0 = const()[name = string("max_chunk_2_keep_dims_0"), val = bool(true)]; + tensor max_chunk_2 = reduce_max(axes = max_chunk_2_axes_0, keep_dims = max_chunk_2_keep_dims_0, x = logits_chunk_2)[name = string("max_chunk_2")]; + tensor logits_chunk_3_weight_1 = const()[name = string("logits_chunk_3_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_1 = const()[name = string("logits_chunk_3_strides_1"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_1 = const()[name = string("logits_chunk_3_pad_type_1"), val = string("valid")]; + tensor logits_chunk_3_pad_1 = const()[name = string("logits_chunk_3_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_1 = const()[name = string("logits_chunk_3_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_1 = const()[name = string("logits_chunk_3_groups_1"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_1, groups = logits_chunk_3_groups_1, pad = logits_chunk_3_pad_1, pad_type = logits_chunk_3_pad_type_1, strides = logits_chunk_3_strides_1, weight = logits_chunk_3_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + int32 argmax_chunk_3_axis_0 = const()[name = string("argmax_chunk_3_axis_0"), val = int32(1)]; + bool argmax_chunk_3_keep_dims_0 = const()[name = string("argmax_chunk_3_keep_dims_0"), val = bool(true)]; + string argmax_chunk_3_output_dtype_0 = const()[name = string("argmax_chunk_3_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_3 = reduce_argmax(axis = argmax_chunk_3_axis_0, keep_dims = argmax_chunk_3_keep_dims_0, output_dtype = argmax_chunk_3_output_dtype_0, x = logits_chunk_3)[name = string("argmax_chunk_3")]; + tensor max_chunk_3_axes_0 = const()[name = string("max_chunk_3_axes_0"), val = tensor([1])]; + bool max_chunk_3_keep_dims_0 = const()[name = string("max_chunk_3_keep_dims_0"), val = bool(true)]; + tensor max_chunk_3 = reduce_max(axes = max_chunk_3_axes_0, keep_dims = max_chunk_3_keep_dims_0, x = logits_chunk_3)[name = string("max_chunk_3")]; + tensor logits_chunk_4_weight_1 = const()[name = string("logits_chunk_4_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_1 = const()[name = string("logits_chunk_4_strides_1"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_1 = const()[name = string("logits_chunk_4_pad_type_1"), val = string("valid")]; + tensor logits_chunk_4_pad_1 = const()[name = string("logits_chunk_4_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_1 = const()[name = string("logits_chunk_4_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_1 = const()[name = string("logits_chunk_4_groups_1"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_1, groups = logits_chunk_4_groups_1, pad = logits_chunk_4_pad_1, pad_type = logits_chunk_4_pad_type_1, strides = logits_chunk_4_strides_1, weight = logits_chunk_4_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + int32 argmax_chunk_4_axis_0 = const()[name = string("argmax_chunk_4_axis_0"), val = int32(1)]; + bool argmax_chunk_4_keep_dims_0 = const()[name = string("argmax_chunk_4_keep_dims_0"), val = bool(true)]; + string argmax_chunk_4_output_dtype_0 = const()[name = string("argmax_chunk_4_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_4 = reduce_argmax(axis = argmax_chunk_4_axis_0, keep_dims = argmax_chunk_4_keep_dims_0, output_dtype = argmax_chunk_4_output_dtype_0, x = logits_chunk_4)[name = string("argmax_chunk_4")]; + tensor max_chunk_4_axes_0 = const()[name = string("max_chunk_4_axes_0"), val = tensor([1])]; + bool max_chunk_4_keep_dims_0 = const()[name = string("max_chunk_4_keep_dims_0"), val = bool(true)]; + tensor max_chunk_4 = reduce_max(axes = max_chunk_4_axes_0, keep_dims = max_chunk_4_keep_dims_0, x = logits_chunk_4)[name = string("max_chunk_4")]; + tensor logits_chunk_5_weight_1 = const()[name = string("logits_chunk_5_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_1 = const()[name = string("logits_chunk_5_strides_1"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_1 = const()[name = string("logits_chunk_5_pad_type_1"), val = string("valid")]; + tensor logits_chunk_5_pad_1 = const()[name = string("logits_chunk_5_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_1 = const()[name = string("logits_chunk_5_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_1 = const()[name = string("logits_chunk_5_groups_1"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_1, groups = logits_chunk_5_groups_1, pad = logits_chunk_5_pad_1, pad_type = logits_chunk_5_pad_type_1, strides = logits_chunk_5_strides_1, weight = logits_chunk_5_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + int32 argmax_chunk_5_axis_0 = const()[name = string("argmax_chunk_5_axis_0"), val = int32(1)]; + bool argmax_chunk_5_keep_dims_0 = const()[name = string("argmax_chunk_5_keep_dims_0"), val = bool(true)]; + string argmax_chunk_5_output_dtype_0 = const()[name = string("argmax_chunk_5_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_5 = reduce_argmax(axis = argmax_chunk_5_axis_0, keep_dims = argmax_chunk_5_keep_dims_0, output_dtype = argmax_chunk_5_output_dtype_0, x = logits_chunk_5)[name = string("argmax_chunk_5")]; + tensor max_chunk_5_axes_0 = const()[name = string("max_chunk_5_axes_0"), val = tensor([1])]; + bool max_chunk_5_keep_dims_0 = const()[name = string("max_chunk_5_keep_dims_0"), val = bool(true)]; + tensor max_chunk_5 = reduce_max(axes = max_chunk_5_axes_0, keep_dims = max_chunk_5_keep_dims_0, x = logits_chunk_5)[name = string("max_chunk_5")]; + tensor logits_chunk_6_weight_1 = const()[name = string("logits_chunk_6_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_1 = const()[name = string("logits_chunk_6_strides_1"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_1 = const()[name = string("logits_chunk_6_pad_type_1"), val = string("valid")]; + tensor logits_chunk_6_pad_1 = const()[name = string("logits_chunk_6_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_1 = const()[name = string("logits_chunk_6_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_1 = const()[name = string("logits_chunk_6_groups_1"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_1, groups = logits_chunk_6_groups_1, pad = logits_chunk_6_pad_1, pad_type = logits_chunk_6_pad_type_1, strides = logits_chunk_6_strides_1, weight = logits_chunk_6_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + int32 argmax_chunk_6_axis_0 = const()[name = string("argmax_chunk_6_axis_0"), val = int32(1)]; + bool argmax_chunk_6_keep_dims_0 = const()[name = string("argmax_chunk_6_keep_dims_0"), val = bool(true)]; + string argmax_chunk_6_output_dtype_0 = const()[name = string("argmax_chunk_6_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_6 = reduce_argmax(axis = argmax_chunk_6_axis_0, keep_dims = argmax_chunk_6_keep_dims_0, output_dtype = argmax_chunk_6_output_dtype_0, x = logits_chunk_6)[name = string("argmax_chunk_6")]; + tensor max_chunk_6_axes_0 = const()[name = string("max_chunk_6_axes_0"), val = tensor([1])]; + bool max_chunk_6_keep_dims_0 = const()[name = string("max_chunk_6_keep_dims_0"), val = bool(true)]; + tensor max_chunk_6 = reduce_max(axes = max_chunk_6_axes_0, keep_dims = max_chunk_6_keep_dims_0, x = logits_chunk_6)[name = string("max_chunk_6")]; + tensor logits_chunk_7_weight_1 = const()[name = string("logits_chunk_7_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_1 = const()[name = string("logits_chunk_7_strides_1"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_1 = const()[name = string("logits_chunk_7_pad_type_1"), val = string("valid")]; + tensor logits_chunk_7_pad_1 = const()[name = string("logits_chunk_7_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_1 = const()[name = string("logits_chunk_7_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_1 = const()[name = string("logits_chunk_7_groups_1"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_1, groups = logits_chunk_7_groups_1, pad = logits_chunk_7_pad_1, pad_type = logits_chunk_7_pad_type_1, strides = logits_chunk_7_strides_1, weight = logits_chunk_7_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + int32 argmax_chunk_7_axis_0 = const()[name = string("argmax_chunk_7_axis_0"), val = int32(1)]; + bool argmax_chunk_7_keep_dims_0 = const()[name = string("argmax_chunk_7_keep_dims_0"), val = bool(true)]; + string argmax_chunk_7_output_dtype_0 = const()[name = string("argmax_chunk_7_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_7 = reduce_argmax(axis = argmax_chunk_7_axis_0, keep_dims = argmax_chunk_7_keep_dims_0, output_dtype = argmax_chunk_7_output_dtype_0, x = logits_chunk_7)[name = string("argmax_chunk_7")]; + tensor max_chunk_7_axes_0 = const()[name = string("max_chunk_7_axes_0"), val = tensor([1])]; + bool max_chunk_7_keep_dims_0 = const()[name = string("max_chunk_7_keep_dims_0"), val = bool(true)]; + tensor max_chunk_7 = reduce_max(axes = max_chunk_7_axes_0, keep_dims = max_chunk_7_keep_dims_0, x = logits_chunk_7)[name = string("max_chunk_7")]; + tensor logits_chunk_8_weight_1 = const()[name = string("logits_chunk_8_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_1 = const()[name = string("logits_chunk_8_strides_1"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_1 = const()[name = string("logits_chunk_8_pad_type_1"), val = string("valid")]; + tensor logits_chunk_8_pad_1 = const()[name = string("logits_chunk_8_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_1 = const()[name = string("logits_chunk_8_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_1 = const()[name = string("logits_chunk_8_groups_1"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_1, groups = logits_chunk_8_groups_1, pad = logits_chunk_8_pad_1, pad_type = logits_chunk_8_pad_type_1, strides = logits_chunk_8_strides_1, weight = logits_chunk_8_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + int32 argmax_chunk_8_axis_0 = const()[name = string("argmax_chunk_8_axis_0"), val = int32(1)]; + bool argmax_chunk_8_keep_dims_0 = const()[name = string("argmax_chunk_8_keep_dims_0"), val = bool(true)]; + string argmax_chunk_8_output_dtype_0 = const()[name = string("argmax_chunk_8_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_8 = reduce_argmax(axis = argmax_chunk_8_axis_0, keep_dims = argmax_chunk_8_keep_dims_0, output_dtype = argmax_chunk_8_output_dtype_0, x = logits_chunk_8)[name = string("argmax_chunk_8")]; + tensor max_chunk_8_axes_0 = const()[name = string("max_chunk_8_axes_0"), val = tensor([1])]; + bool max_chunk_8_keep_dims_0 = const()[name = string("max_chunk_8_keep_dims_0"), val = bool(true)]; + tensor max_chunk_8 = reduce_max(axes = max_chunk_8_axes_0, keep_dims = max_chunk_8_keep_dims_0, x = logits_chunk_8)[name = string("max_chunk_8")]; + tensor logits_chunk_9_weight_1 = const()[name = string("logits_chunk_9_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_1 = const()[name = string("logits_chunk_9_strides_1"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_1 = const()[name = string("logits_chunk_9_pad_type_1"), val = string("valid")]; + tensor logits_chunk_9_pad_1 = const()[name = string("logits_chunk_9_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_1 = const()[name = string("logits_chunk_9_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_1 = const()[name = string("logits_chunk_9_groups_1"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_1, groups = logits_chunk_9_groups_1, pad = logits_chunk_9_pad_1, pad_type = logits_chunk_9_pad_type_1, strides = logits_chunk_9_strides_1, weight = logits_chunk_9_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + int32 argmax_chunk_9_axis_0 = const()[name = string("argmax_chunk_9_axis_0"), val = int32(1)]; + bool argmax_chunk_9_keep_dims_0 = const()[name = string("argmax_chunk_9_keep_dims_0"), val = bool(true)]; + string argmax_chunk_9_output_dtype_0 = const()[name = string("argmax_chunk_9_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_9 = reduce_argmax(axis = argmax_chunk_9_axis_0, keep_dims = argmax_chunk_9_keep_dims_0, output_dtype = argmax_chunk_9_output_dtype_0, x = logits_chunk_9)[name = string("argmax_chunk_9")]; + tensor max_chunk_9_axes_0 = const()[name = string("max_chunk_9_axes_0"), val = tensor([1])]; + bool max_chunk_9_keep_dims_0 = const()[name = string("max_chunk_9_keep_dims_0"), val = bool(true)]; + tensor max_chunk_9 = reduce_max(axes = max_chunk_9_axes_0, keep_dims = max_chunk_9_keep_dims_0, x = logits_chunk_9)[name = string("max_chunk_9")]; + tensor logits_chunk_10_weight_1 = const()[name = string("logits_chunk_10_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_1 = const()[name = string("logits_chunk_10_strides_1"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_1 = const()[name = string("logits_chunk_10_pad_type_1"), val = string("valid")]; + tensor logits_chunk_10_pad_1 = const()[name = string("logits_chunk_10_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_1 = const()[name = string("logits_chunk_10_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_1 = const()[name = string("logits_chunk_10_groups_1"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_1, groups = logits_chunk_10_groups_1, pad = logits_chunk_10_pad_1, pad_type = logits_chunk_10_pad_type_1, strides = logits_chunk_10_strides_1, weight = logits_chunk_10_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + int32 argmax_chunk_10_axis_0 = const()[name = string("argmax_chunk_10_axis_0"), val = int32(1)]; + bool argmax_chunk_10_keep_dims_0 = const()[name = string("argmax_chunk_10_keep_dims_0"), val = bool(true)]; + string argmax_chunk_10_output_dtype_0 = const()[name = string("argmax_chunk_10_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_10 = reduce_argmax(axis = argmax_chunk_10_axis_0, keep_dims = argmax_chunk_10_keep_dims_0, output_dtype = argmax_chunk_10_output_dtype_0, x = logits_chunk_10)[name = string("argmax_chunk_10")]; + tensor max_chunk_10_axes_0 = const()[name = string("max_chunk_10_axes_0"), val = tensor([1])]; + bool max_chunk_10_keep_dims_0 = const()[name = string("max_chunk_10_keep_dims_0"), val = bool(true)]; + tensor max_chunk_10 = reduce_max(axes = max_chunk_10_axes_0, keep_dims = max_chunk_10_keep_dims_0, x = logits_chunk_10)[name = string("max_chunk_10")]; + tensor logits_chunk_11_weight_1 = const()[name = string("logits_chunk_11_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_1 = const()[name = string("logits_chunk_11_strides_1"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_1 = const()[name = string("logits_chunk_11_pad_type_1"), val = string("valid")]; + tensor logits_chunk_11_pad_1 = const()[name = string("logits_chunk_11_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_1 = const()[name = string("logits_chunk_11_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_1 = const()[name = string("logits_chunk_11_groups_1"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_1, groups = logits_chunk_11_groups_1, pad = logits_chunk_11_pad_1, pad_type = logits_chunk_11_pad_type_1, strides = logits_chunk_11_strides_1, weight = logits_chunk_11_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + int32 argmax_chunk_11_axis_0 = const()[name = string("argmax_chunk_11_axis_0"), val = int32(1)]; + bool argmax_chunk_11_keep_dims_0 = const()[name = string("argmax_chunk_11_keep_dims_0"), val = bool(true)]; + string argmax_chunk_11_output_dtype_0 = const()[name = string("argmax_chunk_11_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_11 = reduce_argmax(axis = argmax_chunk_11_axis_0, keep_dims = argmax_chunk_11_keep_dims_0, output_dtype = argmax_chunk_11_output_dtype_0, x = logits_chunk_11)[name = string("argmax_chunk_11")]; + tensor max_chunk_11_axes_0 = const()[name = string("max_chunk_11_axes_0"), val = tensor([1])]; + bool max_chunk_11_keep_dims_0 = const()[name = string("max_chunk_11_keep_dims_0"), val = bool(true)]; + tensor max_chunk_11 = reduce_max(axes = max_chunk_11_axes_0, keep_dims = max_chunk_11_keep_dims_0, x = logits_chunk_11)[name = string("max_chunk_11")]; + tensor logits_chunk_12_weight_1 = const()[name = string("logits_chunk_12_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_1 = const()[name = string("logits_chunk_12_strides_1"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_1 = const()[name = string("logits_chunk_12_pad_type_1"), val = string("valid")]; + tensor logits_chunk_12_pad_1 = const()[name = string("logits_chunk_12_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_1 = const()[name = string("logits_chunk_12_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_1 = const()[name = string("logits_chunk_12_groups_1"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_1, groups = logits_chunk_12_groups_1, pad = logits_chunk_12_pad_1, pad_type = logits_chunk_12_pad_type_1, strides = logits_chunk_12_strides_1, weight = logits_chunk_12_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + int32 argmax_chunk_12_axis_0 = const()[name = string("argmax_chunk_12_axis_0"), val = int32(1)]; + bool argmax_chunk_12_keep_dims_0 = const()[name = string("argmax_chunk_12_keep_dims_0"), val = bool(true)]; + string argmax_chunk_12_output_dtype_0 = const()[name = string("argmax_chunk_12_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_12 = reduce_argmax(axis = argmax_chunk_12_axis_0, keep_dims = argmax_chunk_12_keep_dims_0, output_dtype = argmax_chunk_12_output_dtype_0, x = logits_chunk_12)[name = string("argmax_chunk_12")]; + tensor max_chunk_12_axes_0 = const()[name = string("max_chunk_12_axes_0"), val = tensor([1])]; + bool max_chunk_12_keep_dims_0 = const()[name = string("max_chunk_12_keep_dims_0"), val = bool(true)]; + tensor max_chunk_12 = reduce_max(axes = max_chunk_12_axes_0, keep_dims = max_chunk_12_keep_dims_0, x = logits_chunk_12)[name = string("max_chunk_12")]; + tensor logits_chunk_13_weight_1 = const()[name = string("logits_chunk_13_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_1 = const()[name = string("logits_chunk_13_strides_1"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_1 = const()[name = string("logits_chunk_13_pad_type_1"), val = string("valid")]; + tensor logits_chunk_13_pad_1 = const()[name = string("logits_chunk_13_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_1 = const()[name = string("logits_chunk_13_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_1 = const()[name = string("logits_chunk_13_groups_1"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_1, groups = logits_chunk_13_groups_1, pad = logits_chunk_13_pad_1, pad_type = logits_chunk_13_pad_type_1, strides = logits_chunk_13_strides_1, weight = logits_chunk_13_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + int32 argmax_chunk_13_axis_0 = const()[name = string("argmax_chunk_13_axis_0"), val = int32(1)]; + bool argmax_chunk_13_keep_dims_0 = const()[name = string("argmax_chunk_13_keep_dims_0"), val = bool(true)]; + string argmax_chunk_13_output_dtype_0 = const()[name = string("argmax_chunk_13_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_13 = reduce_argmax(axis = argmax_chunk_13_axis_0, keep_dims = argmax_chunk_13_keep_dims_0, output_dtype = argmax_chunk_13_output_dtype_0, x = logits_chunk_13)[name = string("argmax_chunk_13")]; + tensor max_chunk_13_axes_0 = const()[name = string("max_chunk_13_axes_0"), val = tensor([1])]; + bool max_chunk_13_keep_dims_0 = const()[name = string("max_chunk_13_keep_dims_0"), val = bool(true)]; + tensor max_chunk_13 = reduce_max(axes = max_chunk_13_axes_0, keep_dims = max_chunk_13_keep_dims_0, x = logits_chunk_13)[name = string("max_chunk_13")]; + tensor logits_chunk_14_weight_1 = const()[name = string("logits_chunk_14_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_1 = const()[name = string("logits_chunk_14_strides_1"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_1 = const()[name = string("logits_chunk_14_pad_type_1"), val = string("valid")]; + tensor logits_chunk_14_pad_1 = const()[name = string("logits_chunk_14_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_1 = const()[name = string("logits_chunk_14_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_1 = const()[name = string("logits_chunk_14_groups_1"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_1, groups = logits_chunk_14_groups_1, pad = logits_chunk_14_pad_1, pad_type = logits_chunk_14_pad_type_1, strides = logits_chunk_14_strides_1, weight = logits_chunk_14_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + int32 argmax_chunk_14_axis_0 = const()[name = string("argmax_chunk_14_axis_0"), val = int32(1)]; + bool argmax_chunk_14_keep_dims_0 = const()[name = string("argmax_chunk_14_keep_dims_0"), val = bool(true)]; + string argmax_chunk_14_output_dtype_0 = const()[name = string("argmax_chunk_14_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_14 = reduce_argmax(axis = argmax_chunk_14_axis_0, keep_dims = argmax_chunk_14_keep_dims_0, output_dtype = argmax_chunk_14_output_dtype_0, x = logits_chunk_14)[name = string("argmax_chunk_14")]; + tensor max_chunk_14_axes_0 = const()[name = string("max_chunk_14_axes_0"), val = tensor([1])]; + bool max_chunk_14_keep_dims_0 = const()[name = string("max_chunk_14_keep_dims_0"), val = bool(true)]; + tensor max_chunk_14 = reduce_max(axes = max_chunk_14_axes_0, keep_dims = max_chunk_14_keep_dims_0, x = logits_chunk_14)[name = string("max_chunk_14")]; + tensor logits_chunk_15_weight_1 = const()[name = string("logits_chunk_15_weight_1"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_1 = const()[name = string("logits_chunk_15_strides_1"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_1 = const()[name = string("logits_chunk_15_pad_type_1"), val = string("valid")]; + tensor logits_chunk_15_pad_1 = const()[name = string("logits_chunk_15_pad_1"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_1 = const()[name = string("logits_chunk_15_dilations_1"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_1 = const()[name = string("logits_chunk_15_groups_1"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_1, groups = logits_chunk_15_groups_1, pad = logits_chunk_15_pad_1, pad_type = logits_chunk_15_pad_type_1, strides = logits_chunk_15_strides_1, weight = logits_chunk_15_weight_1, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + int32 argmax_chunk_15_axis_0 = const()[name = string("argmax_chunk_15_axis_0"), val = int32(1)]; + bool argmax_chunk_15_keep_dims_0 = const()[name = string("argmax_chunk_15_keep_dims_0"), val = bool(true)]; + string argmax_chunk_15_output_dtype_0 = const()[name = string("argmax_chunk_15_output_dtype_0"), val = string("uint16")]; + tensor argmax_chunk_15 = reduce_argmax(axis = argmax_chunk_15_axis_0, keep_dims = argmax_chunk_15_keep_dims_0, output_dtype = argmax_chunk_15_output_dtype_0, x = logits_chunk_15)[name = string("argmax_chunk_15")]; + tensor max_chunk_15_axes_0 = const()[name = string("max_chunk_15_axes_0"), val = tensor([1])]; + bool max_chunk_15_keep_dims_0 = const()[name = string("max_chunk_15_keep_dims_0"), val = bool(true)]; + tensor max_chunk_15 = reduce_max(axes = max_chunk_15_axes_0, keep_dims = max_chunk_15_keep_dims_0, x = logits_chunk_15)[name = string("max_chunk_15")]; + int32 logits_axis_0 = const()[name = string("logits_axis_0"), val = int32(1)]; + bool logits_interleave_0 = const()[name = string("logits_interleave_0"), val = bool(false)]; + tensor logits = concat(axis = logits_axis_0, interleave = logits_interleave_0, values = (logits_chunk_0, logits_chunk_1, logits_chunk_2, logits_chunk_3, logits_chunk_4, logits_chunk_5, logits_chunk_6, logits_chunk_7, logits_chunk_8, logits_chunk_9, logits_chunk_10, logits_chunk_11, logits_chunk_12, logits_chunk_13, logits_chunk_14, logits_chunk_15))[name = string("logits")]; + int32 values_axis_0 = const()[name = string("values_axis_0"), val = int32(1)]; + bool values_interleave_0 = const()[name = string("values_interleave_0"), val = bool(false)]; + tensor values = concat(axis = values_axis_0, interleave = values_interleave_0, values = (max_chunk_0, max_chunk_1, max_chunk_2, max_chunk_3, max_chunk_4, max_chunk_5, max_chunk_6, max_chunk_7, max_chunk_8, max_chunk_9, max_chunk_10, max_chunk_11, max_chunk_12, max_chunk_13, max_chunk_14, max_chunk_15))[name = string("values")]; + tensor max_value_axes_0 = const()[name = string("max_value_axes_0"), val = tensor([1])]; + bool max_value_keep_dims_0 = const()[name = string("max_value_keep_dims_0"), val = bool(false)]; + tensor max_value = reduce_max(axes = max_value_axes_0, keep_dims = max_value_keep_dims_0, x = values)[name = string("max_value")]; + int32 max_value_index_axis_0 = const()[name = string("max_value_index_axis_0"), val = int32(1)]; + bool max_value_index_keep_dims_0 = const()[name = string("max_value_index_keep_dims_0"), val = bool(true)]; + string max_value_index_output_dtype_0 = const()[name = string("max_value_index_output_dtype_0"), val = string("int32")]; + tensor max_value_index = reduce_argmax(axis = max_value_index_axis_0, keep_dims = max_value_index_keep_dims_0, output_dtype = max_value_index_output_dtype_0, x = values)[name = string("max_value_index")]; + string indices_chunk_0_int32_dtype_1 = const()[name = string("indices_chunk_0_int32_dtype_1"), val = string("int32")]; + string indices_chunk_1_int32_dtype_1 = const()[name = string("indices_chunk_1_int32_dtype_1"), val = string("int32")]; + string indices_chunk_2_int32_dtype_1 = const()[name = string("indices_chunk_2_int32_dtype_1"), val = string("int32")]; + string indices_chunk_3_int32_dtype_1 = const()[name = string("indices_chunk_3_int32_dtype_1"), val = string("int32")]; + string indices_chunk_4_int32_dtype_1 = const()[name = string("indices_chunk_4_int32_dtype_1"), val = string("int32")]; + string indices_chunk_5_int32_dtype_1 = const()[name = string("indices_chunk_5_int32_dtype_1"), val = string("int32")]; + string indices_chunk_6_int32_dtype_1 = const()[name = string("indices_chunk_6_int32_dtype_1"), val = string("int32")]; + string indices_chunk_7_int32_dtype_1 = const()[name = string("indices_chunk_7_int32_dtype_1"), val = string("int32")]; + string indices_chunk_8_int32_dtype_1 = const()[name = string("indices_chunk_8_int32_dtype_1"), val = string("int32")]; + string indices_chunk_9_int32_dtype_1 = const()[name = string("indices_chunk_9_int32_dtype_1"), val = string("int32")]; + string indices_chunk_10_int32_dtype_1 = const()[name = string("indices_chunk_10_int32_dtype_1"), val = string("int32")]; + string indices_chunk_11_int32_dtype_1 = const()[name = string("indices_chunk_11_int32_dtype_1"), val = string("int32")]; + string indices_chunk_12_int32_dtype_1 = const()[name = string("indices_chunk_12_int32_dtype_1"), val = string("int32")]; + string indices_chunk_13_int32_dtype_1 = const()[name = string("indices_chunk_13_int32_dtype_1"), val = string("int32")]; + string indices_chunk_14_int32_dtype_1 = const()[name = string("indices_chunk_14_int32_dtype_1"), val = string("int32")]; + string indices_chunk_15_int32_dtype_1 = const()[name = string("indices_chunk_15_int32_dtype_1"), val = string("int32")]; + int32 indices_axis_1 = const()[name = string("indices_axis_1"), val = int32(1)]; + bool indices_interleave_1 = const()[name = string("indices_interleave_1"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_1, x = argmax_chunk_15)[name = string("cast_0")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_1, x = argmax_chunk_14)[name = string("cast_1")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_1, x = argmax_chunk_13)[name = string("cast_2")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_1, x = argmax_chunk_12)[name = string("cast_3")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_1, x = argmax_chunk_11)[name = string("cast_4")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_1, x = argmax_chunk_10)[name = string("cast_5")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_1, x = argmax_chunk_9)[name = string("cast_6")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_1, x = argmax_chunk_8)[name = string("cast_7")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_1, x = argmax_chunk_7)[name = string("cast_8")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_1, x = argmax_chunk_6)[name = string("cast_9")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_1, x = argmax_chunk_5)[name = string("cast_10")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_1, x = argmax_chunk_4)[name = string("cast_11")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_1, x = argmax_chunk_3)[name = string("cast_12")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_1, x = argmax_chunk_2)[name = string("cast_13")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_1, x = argmax_chunk_1)[name = string("cast_14")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_1, x = argmax_chunk_0)[name = string("cast_15")]; + tensor indices = concat(axis = indices_axis_1, interleave = indices_interleave_1, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_1 = const()[name = string("argmax_chunks_axis_1"), val = int32(1)]; + bool argmax_chunks_validate_indices_1 = const()[name = string("argmax_chunks_validate_indices_1"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_1, indices = max_value_index, validate_indices = argmax_chunks_validate_indices_1, x = indices)[name = string("argmax_chunks")]; + int32 mul_1_x_0 = const()[name = string("mul_1_x_0"), val = int32(2048)]; + tensor mul_1 = mul(x = mul_1_x_0, y = max_value_index)[name = string("mul_1")]; + tensor argmax = add(x = argmax_chunks, y = mul_1)[name = string("argmax")]; + } -> (logits, argmax, max_value); + func min_p_length_1(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_67")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_66")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_65")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_64")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_63")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_62")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_61")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_60")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_59")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_58")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_57")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_56")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_55")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_54")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_53")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_52")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_51")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_50")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_34")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_35")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_36")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_37")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_38")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_39")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_40")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_41")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_42")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_43")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_44")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_45")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_46")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_47")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_48")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_49")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); + func min_p_length_128(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_271")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_270")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_269")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_268")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_267")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_266")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_265")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_264")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_263")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_262")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_261")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_260")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_259")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_258")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_257")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_256")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_255")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_254")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_238")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_239")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_240")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_241")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_242")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_243")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_244")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_245")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_246")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_247")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_248")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_249")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_250")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_251")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_252")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_253")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); + func min_p_length_16(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_135")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_134")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_133")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_132")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_131")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_130")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_129")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_128")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_127")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_126")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_125")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_124")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_123")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_122")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_121")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_120")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_119")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_118")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_102")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_103")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_104")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_105")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_106")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_107")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_108")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_109")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_110")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_111")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_112")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_113")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_114")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_115")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_116")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_117")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); + func min_p_length_32(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_169")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_168")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_167")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_166")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_165")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_164")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_163")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_162")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_161")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_160")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_159")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_158")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_157")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_156")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_155")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_154")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_153")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_152")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_136")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_137")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_138")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_139")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_140")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_141")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_142")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_143")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_144")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_145")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_146")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_147")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_148")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_149")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_150")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_151")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); + func min_p_length_48(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_203")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_202")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_201")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_200")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_199")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_198")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_197")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_196")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_195")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_194")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_193")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_192")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_191")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_190")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_189")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_188")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_187")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_186")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_170")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_171")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_172")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_173")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_174")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_175")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_176")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_177")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_178")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_179")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_180")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_181")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_182")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_183")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_184")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_185")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); + func min_p_length_64(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_237")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_236")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_235")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_234")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_233")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_232")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_231")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_230")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_229")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_228")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_227")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_226")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_225")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_224")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_223")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_222")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_221")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_220")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_204")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_205")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_206")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_207")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_208")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_209")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_210")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_211")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_212")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_213")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_214")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_215")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_216")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_217")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_218")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_219")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); + func min_p_length_8(tensor hidden_states, tensor p, tensor random_number, tensor temp) { + tensor final_norm_rmsnorm_abs = abs(x = hidden_states)[name = string("final_norm_rmsnorm_abs")]; + tensor final_norm_rmsnorm_maxval_axes_0 = const()[name = string("final_norm_rmsnorm_maxval_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_maxval_keep_dims_0 = const()[name = string("final_norm_rmsnorm_maxval_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_maxval = reduce_max(axes = final_norm_rmsnorm_maxval_axes_0, keep_dims = final_norm_rmsnorm_maxval_keep_dims_0, x = final_norm_rmsnorm_abs)[name = string("final_norm_rmsnorm_maxval")]; + fp16 final_norm_rmsnorm_maxval_clipped_alpha_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_alpha_0"), val = fp16(0x1p-14)]; + fp16 final_norm_rmsnorm_maxval_clipped_beta_0 = const()[name = string("final_norm_rmsnorm_maxval_clipped_beta_0"), val = fp16(inf)]; + tensor final_norm_rmsnorm_maxval_clipped = clip(alpha = final_norm_rmsnorm_maxval_clipped_alpha_0, beta = final_norm_rmsnorm_maxval_clipped_beta_0, x = final_norm_rmsnorm_maxval)[name = string("final_norm_rmsnorm_maxval_clipped")]; + tensor final_norm_rmsnorm_scaled = real_div(x = hidden_states, y = final_norm_rmsnorm_maxval_clipped)[name = string("final_norm_rmsnorm_scaled")]; + tensor final_norm_rmsnorm_squared_sum_axes_0 = const()[name = string("final_norm_rmsnorm_squared_sum_axes_0"), val = tensor([1])]; + bool final_norm_rmsnorm_squared_sum_keep_dims_0 = const()[name = string("final_norm_rmsnorm_squared_sum_keep_dims_0"), val = bool(true)]; + tensor final_norm_rmsnorm_squared_sum = reduce_sum_square(axes = final_norm_rmsnorm_squared_sum_axes_0, keep_dims = final_norm_rmsnorm_squared_sum_keep_dims_0, x = final_norm_rmsnorm_scaled)[name = string("final_norm_rmsnorm_squared_sum")]; + fp16 final_norm_rmsnorm_rsqrt_epsilon_0 = const()[name = string("final_norm_rmsnorm_rsqrt_epsilon_0"), val = fp16(0x1p-14)]; + tensor final_norm_rmsnorm_rsqrt = rsqrt(epsilon = final_norm_rmsnorm_rsqrt_epsilon_0, x = final_norm_rmsnorm_squared_sum)[name = string("final_norm_rmsnorm_rsqrt")]; + fp16 final_norm_rmsnorm_dim_scaled_y_0 = const()[name = string("final_norm_rmsnorm_dim_scaled_y_0"), val = fp16(0x1.6ap+5)]; + tensor final_norm_rmsnorm_dim_scaled = mul(x = final_norm_rmsnorm_scaled, y = final_norm_rmsnorm_dim_scaled_y_0)[name = string("final_norm_rmsnorm_dim_scaled")]; + tensor final_norm_rmsnorm_normalized = mul(x = final_norm_rmsnorm_dim_scaled, y = final_norm_rmsnorm_rsqrt)[name = string("final_norm_rmsnorm_normalized")]; + tensor final_norm_rmsnorm_y_0 = const()[name = string("final_norm_rmsnorm_y_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; + tensor final_norm_rmsnorm = mul(x = final_norm_rmsnorm_normalized, y = final_norm_rmsnorm_y_0)[name = string("final_norm_rmsnorm")]; + fp16 temp_inverse_epsilon_0 = const()[name = string("temp_inverse_epsilon_0"), val = fp16(0x0p+0)]; + tensor temp_inverse = inverse(epsilon = temp_inverse_epsilon_0, x = temp)[name = string("temp_inverse")]; + tensor logits_chunk_0_weight_0 = const()[name = string("logits_chunk_0_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4224)))]; + tensor logits_chunk_0_strides_0 = const()[name = string("logits_chunk_0_strides_0"), val = tensor([1, 1])]; + string logits_chunk_0_pad_type_0 = const()[name = string("logits_chunk_0_pad_type_0"), val = string("valid")]; + tensor logits_chunk_0_pad_0 = const()[name = string("logits_chunk_0_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_0_dilations_0 = const()[name = string("logits_chunk_0_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_0_groups_0 = const()[name = string("logits_chunk_0_groups_0"), val = int32(1)]; + tensor logits_chunk_0 = conv(dilations = logits_chunk_0_dilations_0, groups = logits_chunk_0_groups_0, pad = logits_chunk_0_pad_0, pad_type = logits_chunk_0_pad_type_0, strides = logits_chunk_0_strides_0, weight = logits_chunk_0_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_0")]; + tensor logits_chunk_0_mul = mul(x = logits_chunk_0, y = temp_inverse)[name = string("logits_chunk_0_mul")]; + tensor logits_chunk_0_max_axes_0 = const()[name = string("logits_chunk_0_max_axes_0"), val = tensor([1])]; + bool logits_chunk_0_max_keep_dims_0 = const()[name = string("logits_chunk_0_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_max = reduce_max(axes = logits_chunk_0_max_axes_0, keep_dims = logits_chunk_0_max_keep_dims_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_max")]; + int32 logits_chunk_0_argmax_axis_0 = const()[name = string("logits_chunk_0_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_0_argmax_keep_dims_0 = const()[name = string("logits_chunk_0_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_0_argmax_output_dtype_0 = const()[name = string("logits_chunk_0_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_0_argmax = reduce_argmax(axis = logits_chunk_0_argmax_axis_0, keep_dims = logits_chunk_0_argmax_keep_dims_0, output_dtype = logits_chunk_0_argmax_output_dtype_0, x = logits_chunk_0_mul)[name = string("logits_chunk_0_argmax")]; + tensor logits_chunk_0_sub = sub(x = logits_chunk_0_mul, y = logits_chunk_0_max)[name = string("logits_chunk_0_sub")]; + tensor logits_chunk_0_lse_sub_axes_0 = const()[name = string("logits_chunk_0_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_0_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_0_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_0_lse_sub = reduce_log_sum_exp(axes = logits_chunk_0_lse_sub_axes_0, keep_dims = logits_chunk_0_lse_sub_keep_dims_0, x = logits_chunk_0_sub)[name = string("logits_chunk_0_lse_sub")]; + tensor logits_chunk_0_lse = add(x = logits_chunk_0_lse_sub, y = logits_chunk_0_max)[name = string("logits_chunk_0_lse")]; + tensor logits_chunk_1_weight_0 = const()[name = string("logits_chunk_1_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8392896)))]; + tensor logits_chunk_1_strides_0 = const()[name = string("logits_chunk_1_strides_0"), val = tensor([1, 1])]; + string logits_chunk_1_pad_type_0 = const()[name = string("logits_chunk_1_pad_type_0"), val = string("valid")]; + tensor logits_chunk_1_pad_0 = const()[name = string("logits_chunk_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_1_dilations_0 = const()[name = string("logits_chunk_1_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_1_groups_0 = const()[name = string("logits_chunk_1_groups_0"), val = int32(1)]; + tensor logits_chunk_1 = conv(dilations = logits_chunk_1_dilations_0, groups = logits_chunk_1_groups_0, pad = logits_chunk_1_pad_0, pad_type = logits_chunk_1_pad_type_0, strides = logits_chunk_1_strides_0, weight = logits_chunk_1_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_1")]; + tensor logits_chunk_1_mul = mul(x = logits_chunk_1, y = temp_inverse)[name = string("logits_chunk_1_mul")]; + tensor logits_chunk_1_max_axes_0 = const()[name = string("logits_chunk_1_max_axes_0"), val = tensor([1])]; + bool logits_chunk_1_max_keep_dims_0 = const()[name = string("logits_chunk_1_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_max = reduce_max(axes = logits_chunk_1_max_axes_0, keep_dims = logits_chunk_1_max_keep_dims_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_max")]; + int32 logits_chunk_1_argmax_axis_0 = const()[name = string("logits_chunk_1_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_1_argmax_keep_dims_0 = const()[name = string("logits_chunk_1_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_1_argmax_output_dtype_0 = const()[name = string("logits_chunk_1_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_1_argmax = reduce_argmax(axis = logits_chunk_1_argmax_axis_0, keep_dims = logits_chunk_1_argmax_keep_dims_0, output_dtype = logits_chunk_1_argmax_output_dtype_0, x = logits_chunk_1_mul)[name = string("logits_chunk_1_argmax")]; + tensor logits_chunk_1_sub = sub(x = logits_chunk_1_mul, y = logits_chunk_1_max)[name = string("logits_chunk_1_sub")]; + tensor logits_chunk_1_lse_sub_axes_0 = const()[name = string("logits_chunk_1_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_1_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_1_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_1_lse_sub = reduce_log_sum_exp(axes = logits_chunk_1_lse_sub_axes_0, keep_dims = logits_chunk_1_lse_sub_keep_dims_0, x = logits_chunk_1_sub)[name = string("logits_chunk_1_lse_sub")]; + tensor logits_chunk_1_lse = add(x = logits_chunk_1_lse_sub, y = logits_chunk_1_max)[name = string("logits_chunk_1_lse")]; + tensor logits_chunk_2_weight_0 = const()[name = string("logits_chunk_2_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16781568)))]; + tensor logits_chunk_2_strides_0 = const()[name = string("logits_chunk_2_strides_0"), val = tensor([1, 1])]; + string logits_chunk_2_pad_type_0 = const()[name = string("logits_chunk_2_pad_type_0"), val = string("valid")]; + tensor logits_chunk_2_pad_0 = const()[name = string("logits_chunk_2_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_2_dilations_0 = const()[name = string("logits_chunk_2_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_2_groups_0 = const()[name = string("logits_chunk_2_groups_0"), val = int32(1)]; + tensor logits_chunk_2 = conv(dilations = logits_chunk_2_dilations_0, groups = logits_chunk_2_groups_0, pad = logits_chunk_2_pad_0, pad_type = logits_chunk_2_pad_type_0, strides = logits_chunk_2_strides_0, weight = logits_chunk_2_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_2")]; + tensor logits_chunk_2_mul = mul(x = logits_chunk_2, y = temp_inverse)[name = string("logits_chunk_2_mul")]; + tensor logits_chunk_2_max_axes_0 = const()[name = string("logits_chunk_2_max_axes_0"), val = tensor([1])]; + bool logits_chunk_2_max_keep_dims_0 = const()[name = string("logits_chunk_2_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_max = reduce_max(axes = logits_chunk_2_max_axes_0, keep_dims = logits_chunk_2_max_keep_dims_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_max")]; + int32 logits_chunk_2_argmax_axis_0 = const()[name = string("logits_chunk_2_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_2_argmax_keep_dims_0 = const()[name = string("logits_chunk_2_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_2_argmax_output_dtype_0 = const()[name = string("logits_chunk_2_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_2_argmax = reduce_argmax(axis = logits_chunk_2_argmax_axis_0, keep_dims = logits_chunk_2_argmax_keep_dims_0, output_dtype = logits_chunk_2_argmax_output_dtype_0, x = logits_chunk_2_mul)[name = string("logits_chunk_2_argmax")]; + tensor logits_chunk_2_sub = sub(x = logits_chunk_2_mul, y = logits_chunk_2_max)[name = string("logits_chunk_2_sub")]; + tensor logits_chunk_2_lse_sub_axes_0 = const()[name = string("logits_chunk_2_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_2_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_2_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_2_lse_sub = reduce_log_sum_exp(axes = logits_chunk_2_lse_sub_axes_0, keep_dims = logits_chunk_2_lse_sub_keep_dims_0, x = logits_chunk_2_sub)[name = string("logits_chunk_2_lse_sub")]; + tensor logits_chunk_2_lse = add(x = logits_chunk_2_lse_sub, y = logits_chunk_2_max)[name = string("logits_chunk_2_lse")]; + tensor logits_chunk_3_weight_0 = const()[name = string("logits_chunk_3_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(25170240)))]; + tensor logits_chunk_3_strides_0 = const()[name = string("logits_chunk_3_strides_0"), val = tensor([1, 1])]; + string logits_chunk_3_pad_type_0 = const()[name = string("logits_chunk_3_pad_type_0"), val = string("valid")]; + tensor logits_chunk_3_pad_0 = const()[name = string("logits_chunk_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_3_dilations_0 = const()[name = string("logits_chunk_3_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_3_groups_0 = const()[name = string("logits_chunk_3_groups_0"), val = int32(1)]; + tensor logits_chunk_3 = conv(dilations = logits_chunk_3_dilations_0, groups = logits_chunk_3_groups_0, pad = logits_chunk_3_pad_0, pad_type = logits_chunk_3_pad_type_0, strides = logits_chunk_3_strides_0, weight = logits_chunk_3_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_3")]; + tensor logits_chunk_3_mul = mul(x = logits_chunk_3, y = temp_inverse)[name = string("logits_chunk_3_mul")]; + tensor logits_chunk_3_max_axes_0 = const()[name = string("logits_chunk_3_max_axes_0"), val = tensor([1])]; + bool logits_chunk_3_max_keep_dims_0 = const()[name = string("logits_chunk_3_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_max = reduce_max(axes = logits_chunk_3_max_axes_0, keep_dims = logits_chunk_3_max_keep_dims_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_max")]; + int32 logits_chunk_3_argmax_axis_0 = const()[name = string("logits_chunk_3_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_3_argmax_keep_dims_0 = const()[name = string("logits_chunk_3_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_3_argmax_output_dtype_0 = const()[name = string("logits_chunk_3_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_3_argmax = reduce_argmax(axis = logits_chunk_3_argmax_axis_0, keep_dims = logits_chunk_3_argmax_keep_dims_0, output_dtype = logits_chunk_3_argmax_output_dtype_0, x = logits_chunk_3_mul)[name = string("logits_chunk_3_argmax")]; + tensor logits_chunk_3_sub = sub(x = logits_chunk_3_mul, y = logits_chunk_3_max)[name = string("logits_chunk_3_sub")]; + tensor logits_chunk_3_lse_sub_axes_0 = const()[name = string("logits_chunk_3_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_3_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_3_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_3_lse_sub = reduce_log_sum_exp(axes = logits_chunk_3_lse_sub_axes_0, keep_dims = logits_chunk_3_lse_sub_keep_dims_0, x = logits_chunk_3_sub)[name = string("logits_chunk_3_lse_sub")]; + tensor logits_chunk_3_lse = add(x = logits_chunk_3_lse_sub, y = logits_chunk_3_max)[name = string("logits_chunk_3_lse")]; + tensor logits_chunk_4_weight_0 = const()[name = string("logits_chunk_4_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(33558912)))]; + tensor logits_chunk_4_strides_0 = const()[name = string("logits_chunk_4_strides_0"), val = tensor([1, 1])]; + string logits_chunk_4_pad_type_0 = const()[name = string("logits_chunk_4_pad_type_0"), val = string("valid")]; + tensor logits_chunk_4_pad_0 = const()[name = string("logits_chunk_4_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_4_dilations_0 = const()[name = string("logits_chunk_4_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_4_groups_0 = const()[name = string("logits_chunk_4_groups_0"), val = int32(1)]; + tensor logits_chunk_4 = conv(dilations = logits_chunk_4_dilations_0, groups = logits_chunk_4_groups_0, pad = logits_chunk_4_pad_0, pad_type = logits_chunk_4_pad_type_0, strides = logits_chunk_4_strides_0, weight = logits_chunk_4_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_4")]; + tensor logits_chunk_4_mul = mul(x = logits_chunk_4, y = temp_inverse)[name = string("logits_chunk_4_mul")]; + tensor logits_chunk_4_max_axes_0 = const()[name = string("logits_chunk_4_max_axes_0"), val = tensor([1])]; + bool logits_chunk_4_max_keep_dims_0 = const()[name = string("logits_chunk_4_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_max = reduce_max(axes = logits_chunk_4_max_axes_0, keep_dims = logits_chunk_4_max_keep_dims_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_max")]; + int32 logits_chunk_4_argmax_axis_0 = const()[name = string("logits_chunk_4_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_4_argmax_keep_dims_0 = const()[name = string("logits_chunk_4_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_4_argmax_output_dtype_0 = const()[name = string("logits_chunk_4_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_4_argmax = reduce_argmax(axis = logits_chunk_4_argmax_axis_0, keep_dims = logits_chunk_4_argmax_keep_dims_0, output_dtype = logits_chunk_4_argmax_output_dtype_0, x = logits_chunk_4_mul)[name = string("logits_chunk_4_argmax")]; + tensor logits_chunk_4_sub = sub(x = logits_chunk_4_mul, y = logits_chunk_4_max)[name = string("logits_chunk_4_sub")]; + tensor logits_chunk_4_lse_sub_axes_0 = const()[name = string("logits_chunk_4_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_4_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_4_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_4_lse_sub = reduce_log_sum_exp(axes = logits_chunk_4_lse_sub_axes_0, keep_dims = logits_chunk_4_lse_sub_keep_dims_0, x = logits_chunk_4_sub)[name = string("logits_chunk_4_lse_sub")]; + tensor logits_chunk_4_lse = add(x = logits_chunk_4_lse_sub, y = logits_chunk_4_max)[name = string("logits_chunk_4_lse")]; + tensor logits_chunk_5_weight_0 = const()[name = string("logits_chunk_5_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41947584)))]; + tensor logits_chunk_5_strides_0 = const()[name = string("logits_chunk_5_strides_0"), val = tensor([1, 1])]; + string logits_chunk_5_pad_type_0 = const()[name = string("logits_chunk_5_pad_type_0"), val = string("valid")]; + tensor logits_chunk_5_pad_0 = const()[name = string("logits_chunk_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_5_dilations_0 = const()[name = string("logits_chunk_5_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_5_groups_0 = const()[name = string("logits_chunk_5_groups_0"), val = int32(1)]; + tensor logits_chunk_5 = conv(dilations = logits_chunk_5_dilations_0, groups = logits_chunk_5_groups_0, pad = logits_chunk_5_pad_0, pad_type = logits_chunk_5_pad_type_0, strides = logits_chunk_5_strides_0, weight = logits_chunk_5_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_5")]; + tensor logits_chunk_5_mul = mul(x = logits_chunk_5, y = temp_inverse)[name = string("logits_chunk_5_mul")]; + tensor logits_chunk_5_max_axes_0 = const()[name = string("logits_chunk_5_max_axes_0"), val = tensor([1])]; + bool logits_chunk_5_max_keep_dims_0 = const()[name = string("logits_chunk_5_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_max = reduce_max(axes = logits_chunk_5_max_axes_0, keep_dims = logits_chunk_5_max_keep_dims_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_max")]; + int32 logits_chunk_5_argmax_axis_0 = const()[name = string("logits_chunk_5_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_5_argmax_keep_dims_0 = const()[name = string("logits_chunk_5_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_5_argmax_output_dtype_0 = const()[name = string("logits_chunk_5_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_5_argmax = reduce_argmax(axis = logits_chunk_5_argmax_axis_0, keep_dims = logits_chunk_5_argmax_keep_dims_0, output_dtype = logits_chunk_5_argmax_output_dtype_0, x = logits_chunk_5_mul)[name = string("logits_chunk_5_argmax")]; + tensor logits_chunk_5_sub = sub(x = logits_chunk_5_mul, y = logits_chunk_5_max)[name = string("logits_chunk_5_sub")]; + tensor logits_chunk_5_lse_sub_axes_0 = const()[name = string("logits_chunk_5_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_5_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_5_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_5_lse_sub = reduce_log_sum_exp(axes = logits_chunk_5_lse_sub_axes_0, keep_dims = logits_chunk_5_lse_sub_keep_dims_0, x = logits_chunk_5_sub)[name = string("logits_chunk_5_lse_sub")]; + tensor logits_chunk_5_lse = add(x = logits_chunk_5_lse_sub, y = logits_chunk_5_max)[name = string("logits_chunk_5_lse")]; + tensor logits_chunk_6_weight_0 = const()[name = string("logits_chunk_6_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(50336256)))]; + tensor logits_chunk_6_strides_0 = const()[name = string("logits_chunk_6_strides_0"), val = tensor([1, 1])]; + string logits_chunk_6_pad_type_0 = const()[name = string("logits_chunk_6_pad_type_0"), val = string("valid")]; + tensor logits_chunk_6_pad_0 = const()[name = string("logits_chunk_6_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_6_dilations_0 = const()[name = string("logits_chunk_6_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_6_groups_0 = const()[name = string("logits_chunk_6_groups_0"), val = int32(1)]; + tensor logits_chunk_6 = conv(dilations = logits_chunk_6_dilations_0, groups = logits_chunk_6_groups_0, pad = logits_chunk_6_pad_0, pad_type = logits_chunk_6_pad_type_0, strides = logits_chunk_6_strides_0, weight = logits_chunk_6_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_6")]; + tensor logits_chunk_6_mul = mul(x = logits_chunk_6, y = temp_inverse)[name = string("logits_chunk_6_mul")]; + tensor logits_chunk_6_max_axes_0 = const()[name = string("logits_chunk_6_max_axes_0"), val = tensor([1])]; + bool logits_chunk_6_max_keep_dims_0 = const()[name = string("logits_chunk_6_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_max = reduce_max(axes = logits_chunk_6_max_axes_0, keep_dims = logits_chunk_6_max_keep_dims_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_max")]; + int32 logits_chunk_6_argmax_axis_0 = const()[name = string("logits_chunk_6_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_6_argmax_keep_dims_0 = const()[name = string("logits_chunk_6_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_6_argmax_output_dtype_0 = const()[name = string("logits_chunk_6_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_6_argmax = reduce_argmax(axis = logits_chunk_6_argmax_axis_0, keep_dims = logits_chunk_6_argmax_keep_dims_0, output_dtype = logits_chunk_6_argmax_output_dtype_0, x = logits_chunk_6_mul)[name = string("logits_chunk_6_argmax")]; + tensor logits_chunk_6_sub = sub(x = logits_chunk_6_mul, y = logits_chunk_6_max)[name = string("logits_chunk_6_sub")]; + tensor logits_chunk_6_lse_sub_axes_0 = const()[name = string("logits_chunk_6_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_6_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_6_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_6_lse_sub = reduce_log_sum_exp(axes = logits_chunk_6_lse_sub_axes_0, keep_dims = logits_chunk_6_lse_sub_keep_dims_0, x = logits_chunk_6_sub)[name = string("logits_chunk_6_lse_sub")]; + tensor logits_chunk_6_lse = add(x = logits_chunk_6_lse_sub, y = logits_chunk_6_max)[name = string("logits_chunk_6_lse")]; + tensor logits_chunk_7_weight_0 = const()[name = string("logits_chunk_7_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(58724928)))]; + tensor logits_chunk_7_strides_0 = const()[name = string("logits_chunk_7_strides_0"), val = tensor([1, 1])]; + string logits_chunk_7_pad_type_0 = const()[name = string("logits_chunk_7_pad_type_0"), val = string("valid")]; + tensor logits_chunk_7_pad_0 = const()[name = string("logits_chunk_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_7_dilations_0 = const()[name = string("logits_chunk_7_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_7_groups_0 = const()[name = string("logits_chunk_7_groups_0"), val = int32(1)]; + tensor logits_chunk_7 = conv(dilations = logits_chunk_7_dilations_0, groups = logits_chunk_7_groups_0, pad = logits_chunk_7_pad_0, pad_type = logits_chunk_7_pad_type_0, strides = logits_chunk_7_strides_0, weight = logits_chunk_7_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_7")]; + tensor logits_chunk_7_mul = mul(x = logits_chunk_7, y = temp_inverse)[name = string("logits_chunk_7_mul")]; + tensor logits_chunk_7_max_axes_0 = const()[name = string("logits_chunk_7_max_axes_0"), val = tensor([1])]; + bool logits_chunk_7_max_keep_dims_0 = const()[name = string("logits_chunk_7_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_max = reduce_max(axes = logits_chunk_7_max_axes_0, keep_dims = logits_chunk_7_max_keep_dims_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_max")]; + int32 logits_chunk_7_argmax_axis_0 = const()[name = string("logits_chunk_7_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_7_argmax_keep_dims_0 = const()[name = string("logits_chunk_7_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_7_argmax_output_dtype_0 = const()[name = string("logits_chunk_7_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_7_argmax = reduce_argmax(axis = logits_chunk_7_argmax_axis_0, keep_dims = logits_chunk_7_argmax_keep_dims_0, output_dtype = logits_chunk_7_argmax_output_dtype_0, x = logits_chunk_7_mul)[name = string("logits_chunk_7_argmax")]; + tensor logits_chunk_7_sub = sub(x = logits_chunk_7_mul, y = logits_chunk_7_max)[name = string("logits_chunk_7_sub")]; + tensor logits_chunk_7_lse_sub_axes_0 = const()[name = string("logits_chunk_7_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_7_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_7_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_7_lse_sub = reduce_log_sum_exp(axes = logits_chunk_7_lse_sub_axes_0, keep_dims = logits_chunk_7_lse_sub_keep_dims_0, x = logits_chunk_7_sub)[name = string("logits_chunk_7_lse_sub")]; + tensor logits_chunk_7_lse = add(x = logits_chunk_7_lse_sub, y = logits_chunk_7_max)[name = string("logits_chunk_7_lse")]; + tensor logits_chunk_8_weight_0 = const()[name = string("logits_chunk_8_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67113600)))]; + tensor logits_chunk_8_strides_0 = const()[name = string("logits_chunk_8_strides_0"), val = tensor([1, 1])]; + string logits_chunk_8_pad_type_0 = const()[name = string("logits_chunk_8_pad_type_0"), val = string("valid")]; + tensor logits_chunk_8_pad_0 = const()[name = string("logits_chunk_8_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_8_dilations_0 = const()[name = string("logits_chunk_8_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_8_groups_0 = const()[name = string("logits_chunk_8_groups_0"), val = int32(1)]; + tensor logits_chunk_8 = conv(dilations = logits_chunk_8_dilations_0, groups = logits_chunk_8_groups_0, pad = logits_chunk_8_pad_0, pad_type = logits_chunk_8_pad_type_0, strides = logits_chunk_8_strides_0, weight = logits_chunk_8_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_8")]; + tensor logits_chunk_8_mul = mul(x = logits_chunk_8, y = temp_inverse)[name = string("logits_chunk_8_mul")]; + tensor logits_chunk_8_max_axes_0 = const()[name = string("logits_chunk_8_max_axes_0"), val = tensor([1])]; + bool logits_chunk_8_max_keep_dims_0 = const()[name = string("logits_chunk_8_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_max = reduce_max(axes = logits_chunk_8_max_axes_0, keep_dims = logits_chunk_8_max_keep_dims_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_max")]; + int32 logits_chunk_8_argmax_axis_0 = const()[name = string("logits_chunk_8_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_8_argmax_keep_dims_0 = const()[name = string("logits_chunk_8_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_8_argmax_output_dtype_0 = const()[name = string("logits_chunk_8_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_8_argmax = reduce_argmax(axis = logits_chunk_8_argmax_axis_0, keep_dims = logits_chunk_8_argmax_keep_dims_0, output_dtype = logits_chunk_8_argmax_output_dtype_0, x = logits_chunk_8_mul)[name = string("logits_chunk_8_argmax")]; + tensor logits_chunk_8_sub = sub(x = logits_chunk_8_mul, y = logits_chunk_8_max)[name = string("logits_chunk_8_sub")]; + tensor logits_chunk_8_lse_sub_axes_0 = const()[name = string("logits_chunk_8_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_8_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_8_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_8_lse_sub = reduce_log_sum_exp(axes = logits_chunk_8_lse_sub_axes_0, keep_dims = logits_chunk_8_lse_sub_keep_dims_0, x = logits_chunk_8_sub)[name = string("logits_chunk_8_lse_sub")]; + tensor logits_chunk_8_lse = add(x = logits_chunk_8_lse_sub, y = logits_chunk_8_max)[name = string("logits_chunk_8_lse")]; + tensor logits_chunk_9_weight_0 = const()[name = string("logits_chunk_9_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(75502272)))]; + tensor logits_chunk_9_strides_0 = const()[name = string("logits_chunk_9_strides_0"), val = tensor([1, 1])]; + string logits_chunk_9_pad_type_0 = const()[name = string("logits_chunk_9_pad_type_0"), val = string("valid")]; + tensor logits_chunk_9_pad_0 = const()[name = string("logits_chunk_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_9_dilations_0 = const()[name = string("logits_chunk_9_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_9_groups_0 = const()[name = string("logits_chunk_9_groups_0"), val = int32(1)]; + tensor logits_chunk_9 = conv(dilations = logits_chunk_9_dilations_0, groups = logits_chunk_9_groups_0, pad = logits_chunk_9_pad_0, pad_type = logits_chunk_9_pad_type_0, strides = logits_chunk_9_strides_0, weight = logits_chunk_9_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_9")]; + tensor logits_chunk_9_mul = mul(x = logits_chunk_9, y = temp_inverse)[name = string("logits_chunk_9_mul")]; + tensor logits_chunk_9_max_axes_0 = const()[name = string("logits_chunk_9_max_axes_0"), val = tensor([1])]; + bool logits_chunk_9_max_keep_dims_0 = const()[name = string("logits_chunk_9_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_max = reduce_max(axes = logits_chunk_9_max_axes_0, keep_dims = logits_chunk_9_max_keep_dims_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_max")]; + int32 logits_chunk_9_argmax_axis_0 = const()[name = string("logits_chunk_9_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_9_argmax_keep_dims_0 = const()[name = string("logits_chunk_9_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_9_argmax_output_dtype_0 = const()[name = string("logits_chunk_9_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_9_argmax = reduce_argmax(axis = logits_chunk_9_argmax_axis_0, keep_dims = logits_chunk_9_argmax_keep_dims_0, output_dtype = logits_chunk_9_argmax_output_dtype_0, x = logits_chunk_9_mul)[name = string("logits_chunk_9_argmax")]; + tensor logits_chunk_9_sub = sub(x = logits_chunk_9_mul, y = logits_chunk_9_max)[name = string("logits_chunk_9_sub")]; + tensor logits_chunk_9_lse_sub_axes_0 = const()[name = string("logits_chunk_9_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_9_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_9_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_9_lse_sub = reduce_log_sum_exp(axes = logits_chunk_9_lse_sub_axes_0, keep_dims = logits_chunk_9_lse_sub_keep_dims_0, x = logits_chunk_9_sub)[name = string("logits_chunk_9_lse_sub")]; + tensor logits_chunk_9_lse = add(x = logits_chunk_9_lse_sub, y = logits_chunk_9_max)[name = string("logits_chunk_9_lse")]; + tensor logits_chunk_10_weight_0 = const()[name = string("logits_chunk_10_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(83890944)))]; + tensor logits_chunk_10_strides_0 = const()[name = string("logits_chunk_10_strides_0"), val = tensor([1, 1])]; + string logits_chunk_10_pad_type_0 = const()[name = string("logits_chunk_10_pad_type_0"), val = string("valid")]; + tensor logits_chunk_10_pad_0 = const()[name = string("logits_chunk_10_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_10_dilations_0 = const()[name = string("logits_chunk_10_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_10_groups_0 = const()[name = string("logits_chunk_10_groups_0"), val = int32(1)]; + tensor logits_chunk_10 = conv(dilations = logits_chunk_10_dilations_0, groups = logits_chunk_10_groups_0, pad = logits_chunk_10_pad_0, pad_type = logits_chunk_10_pad_type_0, strides = logits_chunk_10_strides_0, weight = logits_chunk_10_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_10")]; + tensor logits_chunk_10_mul = mul(x = logits_chunk_10, y = temp_inverse)[name = string("logits_chunk_10_mul")]; + tensor logits_chunk_10_max_axes_0 = const()[name = string("logits_chunk_10_max_axes_0"), val = tensor([1])]; + bool logits_chunk_10_max_keep_dims_0 = const()[name = string("logits_chunk_10_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_max = reduce_max(axes = logits_chunk_10_max_axes_0, keep_dims = logits_chunk_10_max_keep_dims_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_max")]; + int32 logits_chunk_10_argmax_axis_0 = const()[name = string("logits_chunk_10_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_10_argmax_keep_dims_0 = const()[name = string("logits_chunk_10_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_10_argmax_output_dtype_0 = const()[name = string("logits_chunk_10_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_10_argmax = reduce_argmax(axis = logits_chunk_10_argmax_axis_0, keep_dims = logits_chunk_10_argmax_keep_dims_0, output_dtype = logits_chunk_10_argmax_output_dtype_0, x = logits_chunk_10_mul)[name = string("logits_chunk_10_argmax")]; + tensor logits_chunk_10_sub = sub(x = logits_chunk_10_mul, y = logits_chunk_10_max)[name = string("logits_chunk_10_sub")]; + tensor logits_chunk_10_lse_sub_axes_0 = const()[name = string("logits_chunk_10_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_10_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_10_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_10_lse_sub = reduce_log_sum_exp(axes = logits_chunk_10_lse_sub_axes_0, keep_dims = logits_chunk_10_lse_sub_keep_dims_0, x = logits_chunk_10_sub)[name = string("logits_chunk_10_lse_sub")]; + tensor logits_chunk_10_lse = add(x = logits_chunk_10_lse_sub, y = logits_chunk_10_max)[name = string("logits_chunk_10_lse")]; + tensor logits_chunk_11_weight_0 = const()[name = string("logits_chunk_11_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92279616)))]; + tensor logits_chunk_11_strides_0 = const()[name = string("logits_chunk_11_strides_0"), val = tensor([1, 1])]; + string logits_chunk_11_pad_type_0 = const()[name = string("logits_chunk_11_pad_type_0"), val = string("valid")]; + tensor logits_chunk_11_pad_0 = const()[name = string("logits_chunk_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_11_dilations_0 = const()[name = string("logits_chunk_11_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_11_groups_0 = const()[name = string("logits_chunk_11_groups_0"), val = int32(1)]; + tensor logits_chunk_11 = conv(dilations = logits_chunk_11_dilations_0, groups = logits_chunk_11_groups_0, pad = logits_chunk_11_pad_0, pad_type = logits_chunk_11_pad_type_0, strides = logits_chunk_11_strides_0, weight = logits_chunk_11_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_11")]; + tensor logits_chunk_11_mul = mul(x = logits_chunk_11, y = temp_inverse)[name = string("logits_chunk_11_mul")]; + tensor logits_chunk_11_max_axes_0 = const()[name = string("logits_chunk_11_max_axes_0"), val = tensor([1])]; + bool logits_chunk_11_max_keep_dims_0 = const()[name = string("logits_chunk_11_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_max = reduce_max(axes = logits_chunk_11_max_axes_0, keep_dims = logits_chunk_11_max_keep_dims_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_max")]; + int32 logits_chunk_11_argmax_axis_0 = const()[name = string("logits_chunk_11_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_11_argmax_keep_dims_0 = const()[name = string("logits_chunk_11_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_11_argmax_output_dtype_0 = const()[name = string("logits_chunk_11_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_11_argmax = reduce_argmax(axis = logits_chunk_11_argmax_axis_0, keep_dims = logits_chunk_11_argmax_keep_dims_0, output_dtype = logits_chunk_11_argmax_output_dtype_0, x = logits_chunk_11_mul)[name = string("logits_chunk_11_argmax")]; + tensor logits_chunk_11_sub = sub(x = logits_chunk_11_mul, y = logits_chunk_11_max)[name = string("logits_chunk_11_sub")]; + tensor logits_chunk_11_lse_sub_axes_0 = const()[name = string("logits_chunk_11_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_11_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_11_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_11_lse_sub = reduce_log_sum_exp(axes = logits_chunk_11_lse_sub_axes_0, keep_dims = logits_chunk_11_lse_sub_keep_dims_0, x = logits_chunk_11_sub)[name = string("logits_chunk_11_lse_sub")]; + tensor logits_chunk_11_lse = add(x = logits_chunk_11_lse_sub, y = logits_chunk_11_max)[name = string("logits_chunk_11_lse")]; + tensor logits_chunk_12_weight_0 = const()[name = string("logits_chunk_12_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(100668288)))]; + tensor logits_chunk_12_strides_0 = const()[name = string("logits_chunk_12_strides_0"), val = tensor([1, 1])]; + string logits_chunk_12_pad_type_0 = const()[name = string("logits_chunk_12_pad_type_0"), val = string("valid")]; + tensor logits_chunk_12_pad_0 = const()[name = string("logits_chunk_12_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_12_dilations_0 = const()[name = string("logits_chunk_12_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_12_groups_0 = const()[name = string("logits_chunk_12_groups_0"), val = int32(1)]; + tensor logits_chunk_12 = conv(dilations = logits_chunk_12_dilations_0, groups = logits_chunk_12_groups_0, pad = logits_chunk_12_pad_0, pad_type = logits_chunk_12_pad_type_0, strides = logits_chunk_12_strides_0, weight = logits_chunk_12_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_12")]; + tensor logits_chunk_12_mul = mul(x = logits_chunk_12, y = temp_inverse)[name = string("logits_chunk_12_mul")]; + tensor logits_chunk_12_max_axes_0 = const()[name = string("logits_chunk_12_max_axes_0"), val = tensor([1])]; + bool logits_chunk_12_max_keep_dims_0 = const()[name = string("logits_chunk_12_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_max = reduce_max(axes = logits_chunk_12_max_axes_0, keep_dims = logits_chunk_12_max_keep_dims_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_max")]; + int32 logits_chunk_12_argmax_axis_0 = const()[name = string("logits_chunk_12_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_12_argmax_keep_dims_0 = const()[name = string("logits_chunk_12_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_12_argmax_output_dtype_0 = const()[name = string("logits_chunk_12_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_12_argmax = reduce_argmax(axis = logits_chunk_12_argmax_axis_0, keep_dims = logits_chunk_12_argmax_keep_dims_0, output_dtype = logits_chunk_12_argmax_output_dtype_0, x = logits_chunk_12_mul)[name = string("logits_chunk_12_argmax")]; + tensor logits_chunk_12_sub = sub(x = logits_chunk_12_mul, y = logits_chunk_12_max)[name = string("logits_chunk_12_sub")]; + tensor logits_chunk_12_lse_sub_axes_0 = const()[name = string("logits_chunk_12_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_12_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_12_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_12_lse_sub = reduce_log_sum_exp(axes = logits_chunk_12_lse_sub_axes_0, keep_dims = logits_chunk_12_lse_sub_keep_dims_0, x = logits_chunk_12_sub)[name = string("logits_chunk_12_lse_sub")]; + tensor logits_chunk_12_lse = add(x = logits_chunk_12_lse_sub, y = logits_chunk_12_max)[name = string("logits_chunk_12_lse")]; + tensor logits_chunk_13_weight_0 = const()[name = string("logits_chunk_13_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(109056960)))]; + tensor logits_chunk_13_strides_0 = const()[name = string("logits_chunk_13_strides_0"), val = tensor([1, 1])]; + string logits_chunk_13_pad_type_0 = const()[name = string("logits_chunk_13_pad_type_0"), val = string("valid")]; + tensor logits_chunk_13_pad_0 = const()[name = string("logits_chunk_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_13_dilations_0 = const()[name = string("logits_chunk_13_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_13_groups_0 = const()[name = string("logits_chunk_13_groups_0"), val = int32(1)]; + tensor logits_chunk_13 = conv(dilations = logits_chunk_13_dilations_0, groups = logits_chunk_13_groups_0, pad = logits_chunk_13_pad_0, pad_type = logits_chunk_13_pad_type_0, strides = logits_chunk_13_strides_0, weight = logits_chunk_13_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_13")]; + tensor logits_chunk_13_mul = mul(x = logits_chunk_13, y = temp_inverse)[name = string("logits_chunk_13_mul")]; + tensor logits_chunk_13_max_axes_0 = const()[name = string("logits_chunk_13_max_axes_0"), val = tensor([1])]; + bool logits_chunk_13_max_keep_dims_0 = const()[name = string("logits_chunk_13_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_max = reduce_max(axes = logits_chunk_13_max_axes_0, keep_dims = logits_chunk_13_max_keep_dims_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_max")]; + int32 logits_chunk_13_argmax_axis_0 = const()[name = string("logits_chunk_13_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_13_argmax_keep_dims_0 = const()[name = string("logits_chunk_13_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_13_argmax_output_dtype_0 = const()[name = string("logits_chunk_13_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_13_argmax = reduce_argmax(axis = logits_chunk_13_argmax_axis_0, keep_dims = logits_chunk_13_argmax_keep_dims_0, output_dtype = logits_chunk_13_argmax_output_dtype_0, x = logits_chunk_13_mul)[name = string("logits_chunk_13_argmax")]; + tensor logits_chunk_13_sub = sub(x = logits_chunk_13_mul, y = logits_chunk_13_max)[name = string("logits_chunk_13_sub")]; + tensor logits_chunk_13_lse_sub_axes_0 = const()[name = string("logits_chunk_13_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_13_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_13_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_13_lse_sub = reduce_log_sum_exp(axes = logits_chunk_13_lse_sub_axes_0, keep_dims = logits_chunk_13_lse_sub_keep_dims_0, x = logits_chunk_13_sub)[name = string("logits_chunk_13_lse_sub")]; + tensor logits_chunk_13_lse = add(x = logits_chunk_13_lse_sub, y = logits_chunk_13_max)[name = string("logits_chunk_13_lse")]; + tensor logits_chunk_14_weight_0 = const()[name = string("logits_chunk_14_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(117445632)))]; + tensor logits_chunk_14_strides_0 = const()[name = string("logits_chunk_14_strides_0"), val = tensor([1, 1])]; + string logits_chunk_14_pad_type_0 = const()[name = string("logits_chunk_14_pad_type_0"), val = string("valid")]; + tensor logits_chunk_14_pad_0 = const()[name = string("logits_chunk_14_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_14_dilations_0 = const()[name = string("logits_chunk_14_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_14_groups_0 = const()[name = string("logits_chunk_14_groups_0"), val = int32(1)]; + tensor logits_chunk_14 = conv(dilations = logits_chunk_14_dilations_0, groups = logits_chunk_14_groups_0, pad = logits_chunk_14_pad_0, pad_type = logits_chunk_14_pad_type_0, strides = logits_chunk_14_strides_0, weight = logits_chunk_14_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_14")]; + tensor logits_chunk_14_mul = mul(x = logits_chunk_14, y = temp_inverse)[name = string("logits_chunk_14_mul")]; + tensor logits_chunk_14_max_axes_0 = const()[name = string("logits_chunk_14_max_axes_0"), val = tensor([1])]; + bool logits_chunk_14_max_keep_dims_0 = const()[name = string("logits_chunk_14_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_max = reduce_max(axes = logits_chunk_14_max_axes_0, keep_dims = logits_chunk_14_max_keep_dims_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_max")]; + int32 logits_chunk_14_argmax_axis_0 = const()[name = string("logits_chunk_14_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_14_argmax_keep_dims_0 = const()[name = string("logits_chunk_14_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_14_argmax_output_dtype_0 = const()[name = string("logits_chunk_14_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_14_argmax = reduce_argmax(axis = logits_chunk_14_argmax_axis_0, keep_dims = logits_chunk_14_argmax_keep_dims_0, output_dtype = logits_chunk_14_argmax_output_dtype_0, x = logits_chunk_14_mul)[name = string("logits_chunk_14_argmax")]; + tensor logits_chunk_14_sub = sub(x = logits_chunk_14_mul, y = logits_chunk_14_max)[name = string("logits_chunk_14_sub")]; + tensor logits_chunk_14_lse_sub_axes_0 = const()[name = string("logits_chunk_14_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_14_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_14_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_14_lse_sub = reduce_log_sum_exp(axes = logits_chunk_14_lse_sub_axes_0, keep_dims = logits_chunk_14_lse_sub_keep_dims_0, x = logits_chunk_14_sub)[name = string("logits_chunk_14_lse_sub")]; + tensor logits_chunk_14_lse = add(x = logits_chunk_14_lse_sub, y = logits_chunk_14_max)[name = string("logits_chunk_14_lse")]; + tensor logits_chunk_15_weight_0 = const()[name = string("logits_chunk_15_weight_0"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(125834304)))]; + tensor logits_chunk_15_strides_0 = const()[name = string("logits_chunk_15_strides_0"), val = tensor([1, 1])]; + string logits_chunk_15_pad_type_0 = const()[name = string("logits_chunk_15_pad_type_0"), val = string("valid")]; + tensor logits_chunk_15_pad_0 = const()[name = string("logits_chunk_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor logits_chunk_15_dilations_0 = const()[name = string("logits_chunk_15_dilations_0"), val = tensor([1, 1])]; + int32 logits_chunk_15_groups_0 = const()[name = string("logits_chunk_15_groups_0"), val = int32(1)]; + tensor logits_chunk_15 = conv(dilations = logits_chunk_15_dilations_0, groups = logits_chunk_15_groups_0, pad = logits_chunk_15_pad_0, pad_type = logits_chunk_15_pad_type_0, strides = logits_chunk_15_strides_0, weight = logits_chunk_15_weight_0, x = final_norm_rmsnorm)[name = string("logits_chunk_15")]; + tensor logits_chunk_15_mul = mul(x = logits_chunk_15, y = temp_inverse)[name = string("logits_chunk_15_mul")]; + tensor logits_chunk_15_max_axes_0 = const()[name = string("logits_chunk_15_max_axes_0"), val = tensor([1])]; + bool logits_chunk_15_max_keep_dims_0 = const()[name = string("logits_chunk_15_max_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_max = reduce_max(axes = logits_chunk_15_max_axes_0, keep_dims = logits_chunk_15_max_keep_dims_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_max")]; + int32 logits_chunk_15_argmax_axis_0 = const()[name = string("logits_chunk_15_argmax_axis_0"), val = int32(1)]; + bool logits_chunk_15_argmax_keep_dims_0 = const()[name = string("logits_chunk_15_argmax_keep_dims_0"), val = bool(true)]; + string logits_chunk_15_argmax_output_dtype_0 = const()[name = string("logits_chunk_15_argmax_output_dtype_0"), val = string("uint16")]; + tensor logits_chunk_15_argmax = reduce_argmax(axis = logits_chunk_15_argmax_axis_0, keep_dims = logits_chunk_15_argmax_keep_dims_0, output_dtype = logits_chunk_15_argmax_output_dtype_0, x = logits_chunk_15_mul)[name = string("logits_chunk_15_argmax")]; + tensor logits_chunk_15_sub = sub(x = logits_chunk_15_mul, y = logits_chunk_15_max)[name = string("logits_chunk_15_sub")]; + tensor logits_chunk_15_lse_sub_axes_0 = const()[name = string("logits_chunk_15_lse_sub_axes_0"), val = tensor([1])]; + bool logits_chunk_15_lse_sub_keep_dims_0 = const()[name = string("logits_chunk_15_lse_sub_keep_dims_0"), val = bool(true)]; + tensor logits_chunk_15_lse_sub = reduce_log_sum_exp(axes = logits_chunk_15_lse_sub_axes_0, keep_dims = logits_chunk_15_lse_sub_keep_dims_0, x = logits_chunk_15_sub)[name = string("logits_chunk_15_lse_sub")]; + tensor logits_chunk_15_lse = add(x = logits_chunk_15_lse_sub, y = logits_chunk_15_max)[name = string("logits_chunk_15_lse")]; + int32 logits_lses_axis_0 = const()[name = string("logits_lses_axis_0"), val = int32(1)]; + bool logits_lses_interleave_0 = const()[name = string("logits_lses_interleave_0"), val = bool(false)]; + tensor logits_lses = concat(axis = logits_lses_axis_0, interleave = logits_lses_interleave_0, values = (logits_chunk_0_lse, logits_chunk_1_lse, logits_chunk_2_lse, logits_chunk_3_lse, logits_chunk_4_lse, logits_chunk_5_lse, logits_chunk_6_lse, logits_chunk_7_lse, logits_chunk_8_lse, logits_chunk_9_lse, logits_chunk_10_lse, logits_chunk_11_lse, logits_chunk_12_lse, logits_chunk_13_lse, logits_chunk_14_lse, logits_chunk_15_lse))[name = string("logits_lses")]; + tensor logits_lses_max_axes_0 = const()[name = string("logits_lses_max_axes_0"), val = tensor([1])]; + bool logits_lses_max_keep_dims_0 = const()[name = string("logits_lses_max_keep_dims_0"), val = bool(true)]; + tensor logits_lses_max = reduce_max(axes = logits_lses_max_axes_0, keep_dims = logits_lses_max_keep_dims_0, x = logits_lses)[name = string("logits_lses_max")]; + tensor logits_lses_sub = sub(x = logits_lses, y = logits_lses_max)[name = string("logits_lses_sub")]; + tensor logits_lses_logsumexp_axes_0 = const()[name = string("logits_lses_logsumexp_axes_0"), val = tensor([1])]; + bool logits_lses_logsumexp_keep_dims_0 = const()[name = string("logits_lses_logsumexp_keep_dims_0"), val = bool(true)]; + tensor logits_lses_logsumexp = reduce_log_sum_exp(axes = logits_lses_logsumexp_axes_0, keep_dims = logits_lses_logsumexp_keep_dims_0, x = logits_lses_sub)[name = string("logits_lses_logsumexp")]; + tensor logits_lse = add(x = logits_lses_logsumexp, y = logits_lses_max)[name = string("logits_lse")]; + int32 logits_max_logits_chunks_axis_0 = const()[name = string("logits_max_logits_chunks_axis_0"), val = int32(1)]; + bool logits_max_logits_chunks_interleave_0 = const()[name = string("logits_max_logits_chunks_interleave_0"), val = bool(false)]; + tensor logits_max_logits_chunks = concat(axis = logits_max_logits_chunks_axis_0, interleave = logits_max_logits_chunks_interleave_0, values = (logits_chunk_0_max, logits_chunk_1_max, logits_chunk_2_max, logits_chunk_3_max, logits_chunk_4_max, logits_chunk_5_max, logits_chunk_6_max, logits_chunk_7_max, logits_chunk_8_max, logits_chunk_9_max, logits_chunk_10_max, logits_chunk_11_max, logits_chunk_12_max, logits_chunk_13_max, logits_chunk_14_max, logits_chunk_15_max))[name = string("logits_max_logits_chunks")]; + tensor logits_max_logit_axes_0 = const()[name = string("logits_max_logit_axes_0"), val = tensor([1])]; + bool logits_max_logit_keep_dims_0 = const()[name = string("logits_max_logit_keep_dims_0"), val = bool(true)]; + tensor logits_max_logit = reduce_max(axes = logits_max_logit_axes_0, keep_dims = logits_max_logit_keep_dims_0, x = logits_max_logits_chunks)[name = string("logits_max_logit")]; + tensor logits_max_logit_sub = sub(x = logits_max_logit, y = logits_lse)[name = string("logits_max_logit_sub")]; + tensor max_prob = exp(x = logits_max_logit_sub)[name = string("max_prob")]; + tensor min_p_thresh = mul(x = max_prob, y = p)[name = string("min_p_thresh")]; + tensor logits_chunk_0_sub_1 = sub(x = logits_chunk_0_mul, y = logits_lse)[name = string("logits_chunk_0_sub_1")]; + tensor probs_chunk_0 = exp(x = logits_chunk_0_sub_1)[name = string("probs_chunk_0")]; + tensor mask_probs_chunk_0 = greater_equal(x = probs_chunk_0, y = min_p_thresh)[name = string("mask_probs_chunk_0")]; + string mask_chunk_0_fp16_dtype_0 = const()[name = string("mask_chunk_0_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_0_fp16 = cast(dtype = mask_chunk_0_fp16_dtype_0, x = mask_probs_chunk_0)[name = string("cast_101")]; + tensor masked_probs_chunk_0 = select(a = probs_chunk_0, b = mask_chunk_0_fp16, cond = mask_probs_chunk_0)[name = string("masked_probs_chunk_0")]; + tensor logits_chunk_1_sub_1 = sub(x = logits_chunk_1_mul, y = logits_lse)[name = string("logits_chunk_1_sub_1")]; + tensor probs_chunk_1 = exp(x = logits_chunk_1_sub_1)[name = string("probs_chunk_1")]; + tensor mask_probs_chunk_1 = greater_equal(x = probs_chunk_1, y = min_p_thresh)[name = string("mask_probs_chunk_1")]; + string mask_chunk_1_fp16_dtype_0 = const()[name = string("mask_chunk_1_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_1_fp16 = cast(dtype = mask_chunk_1_fp16_dtype_0, x = mask_probs_chunk_1)[name = string("cast_100")]; + tensor masked_probs_chunk_1 = select(a = probs_chunk_1, b = mask_chunk_1_fp16, cond = mask_probs_chunk_1)[name = string("masked_probs_chunk_1")]; + tensor logits_chunk_2_sub_1 = sub(x = logits_chunk_2_mul, y = logits_lse)[name = string("logits_chunk_2_sub_1")]; + tensor probs_chunk_2 = exp(x = logits_chunk_2_sub_1)[name = string("probs_chunk_2")]; + tensor mask_probs_chunk_2 = greater_equal(x = probs_chunk_2, y = min_p_thresh)[name = string("mask_probs_chunk_2")]; + string mask_chunk_2_fp16_dtype_0 = const()[name = string("mask_chunk_2_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_2_fp16 = cast(dtype = mask_chunk_2_fp16_dtype_0, x = mask_probs_chunk_2)[name = string("cast_99")]; + tensor masked_probs_chunk_2 = select(a = probs_chunk_2, b = mask_chunk_2_fp16, cond = mask_probs_chunk_2)[name = string("masked_probs_chunk_2")]; + tensor logits_chunk_3_sub_1 = sub(x = logits_chunk_3_mul, y = logits_lse)[name = string("logits_chunk_3_sub_1")]; + tensor probs_chunk_3 = exp(x = logits_chunk_3_sub_1)[name = string("probs_chunk_3")]; + tensor mask_probs_chunk_3 = greater_equal(x = probs_chunk_3, y = min_p_thresh)[name = string("mask_probs_chunk_3")]; + string mask_chunk_3_fp16_dtype_0 = const()[name = string("mask_chunk_3_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_3_fp16 = cast(dtype = mask_chunk_3_fp16_dtype_0, x = mask_probs_chunk_3)[name = string("cast_98")]; + tensor masked_probs_chunk_3 = select(a = probs_chunk_3, b = mask_chunk_3_fp16, cond = mask_probs_chunk_3)[name = string("masked_probs_chunk_3")]; + tensor logits_chunk_4_sub_1 = sub(x = logits_chunk_4_mul, y = logits_lse)[name = string("logits_chunk_4_sub_1")]; + tensor probs_chunk_4 = exp(x = logits_chunk_4_sub_1)[name = string("probs_chunk_4")]; + tensor mask_probs_chunk_4 = greater_equal(x = probs_chunk_4, y = min_p_thresh)[name = string("mask_probs_chunk_4")]; + string mask_chunk_4_fp16_dtype_0 = const()[name = string("mask_chunk_4_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_4_fp16 = cast(dtype = mask_chunk_4_fp16_dtype_0, x = mask_probs_chunk_4)[name = string("cast_97")]; + tensor masked_probs_chunk_4 = select(a = probs_chunk_4, b = mask_chunk_4_fp16, cond = mask_probs_chunk_4)[name = string("masked_probs_chunk_4")]; + tensor logits_chunk_5_sub_1 = sub(x = logits_chunk_5_mul, y = logits_lse)[name = string("logits_chunk_5_sub_1")]; + tensor probs_chunk_5 = exp(x = logits_chunk_5_sub_1)[name = string("probs_chunk_5")]; + tensor mask_probs_chunk_5 = greater_equal(x = probs_chunk_5, y = min_p_thresh)[name = string("mask_probs_chunk_5")]; + string mask_chunk_5_fp16_dtype_0 = const()[name = string("mask_chunk_5_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_5_fp16 = cast(dtype = mask_chunk_5_fp16_dtype_0, x = mask_probs_chunk_5)[name = string("cast_96")]; + tensor masked_probs_chunk_5 = select(a = probs_chunk_5, b = mask_chunk_5_fp16, cond = mask_probs_chunk_5)[name = string("masked_probs_chunk_5")]; + tensor logits_chunk_6_sub_1 = sub(x = logits_chunk_6_mul, y = logits_lse)[name = string("logits_chunk_6_sub_1")]; + tensor probs_chunk_6 = exp(x = logits_chunk_6_sub_1)[name = string("probs_chunk_6")]; + tensor mask_probs_chunk_6 = greater_equal(x = probs_chunk_6, y = min_p_thresh)[name = string("mask_probs_chunk_6")]; + string mask_chunk_6_fp16_dtype_0 = const()[name = string("mask_chunk_6_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_6_fp16 = cast(dtype = mask_chunk_6_fp16_dtype_0, x = mask_probs_chunk_6)[name = string("cast_95")]; + tensor masked_probs_chunk_6 = select(a = probs_chunk_6, b = mask_chunk_6_fp16, cond = mask_probs_chunk_6)[name = string("masked_probs_chunk_6")]; + tensor logits_chunk_7_sub_1 = sub(x = logits_chunk_7_mul, y = logits_lse)[name = string("logits_chunk_7_sub_1")]; + tensor probs_chunk_7 = exp(x = logits_chunk_7_sub_1)[name = string("probs_chunk_7")]; + tensor mask_probs_chunk_7 = greater_equal(x = probs_chunk_7, y = min_p_thresh)[name = string("mask_probs_chunk_7")]; + string mask_chunk_7_fp16_dtype_0 = const()[name = string("mask_chunk_7_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_7_fp16 = cast(dtype = mask_chunk_7_fp16_dtype_0, x = mask_probs_chunk_7)[name = string("cast_94")]; + tensor masked_probs_chunk_7 = select(a = probs_chunk_7, b = mask_chunk_7_fp16, cond = mask_probs_chunk_7)[name = string("masked_probs_chunk_7")]; + tensor logits_chunk_8_sub_1 = sub(x = logits_chunk_8_mul, y = logits_lse)[name = string("logits_chunk_8_sub_1")]; + tensor probs_chunk_8 = exp(x = logits_chunk_8_sub_1)[name = string("probs_chunk_8")]; + tensor mask_probs_chunk_8 = greater_equal(x = probs_chunk_8, y = min_p_thresh)[name = string("mask_probs_chunk_8")]; + string mask_chunk_8_fp16_dtype_0 = const()[name = string("mask_chunk_8_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_8_fp16 = cast(dtype = mask_chunk_8_fp16_dtype_0, x = mask_probs_chunk_8)[name = string("cast_93")]; + tensor masked_probs_chunk_8 = select(a = probs_chunk_8, b = mask_chunk_8_fp16, cond = mask_probs_chunk_8)[name = string("masked_probs_chunk_8")]; + tensor logits_chunk_9_sub_1 = sub(x = logits_chunk_9_mul, y = logits_lse)[name = string("logits_chunk_9_sub_1")]; + tensor probs_chunk_9 = exp(x = logits_chunk_9_sub_1)[name = string("probs_chunk_9")]; + tensor mask_probs_chunk_9 = greater_equal(x = probs_chunk_9, y = min_p_thresh)[name = string("mask_probs_chunk_9")]; + string mask_chunk_9_fp16_dtype_0 = const()[name = string("mask_chunk_9_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_9_fp16 = cast(dtype = mask_chunk_9_fp16_dtype_0, x = mask_probs_chunk_9)[name = string("cast_92")]; + tensor masked_probs_chunk_9 = select(a = probs_chunk_9, b = mask_chunk_9_fp16, cond = mask_probs_chunk_9)[name = string("masked_probs_chunk_9")]; + tensor logits_chunk_10_sub_1 = sub(x = logits_chunk_10_mul, y = logits_lse)[name = string("logits_chunk_10_sub_1")]; + tensor probs_chunk_10 = exp(x = logits_chunk_10_sub_1)[name = string("probs_chunk_10")]; + tensor mask_probs_chunk_10 = greater_equal(x = probs_chunk_10, y = min_p_thresh)[name = string("mask_probs_chunk_10")]; + string mask_chunk_10_fp16_dtype_0 = const()[name = string("mask_chunk_10_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_10_fp16 = cast(dtype = mask_chunk_10_fp16_dtype_0, x = mask_probs_chunk_10)[name = string("cast_91")]; + tensor masked_probs_chunk_10 = select(a = probs_chunk_10, b = mask_chunk_10_fp16, cond = mask_probs_chunk_10)[name = string("masked_probs_chunk_10")]; + tensor logits_chunk_11_sub_1 = sub(x = logits_chunk_11_mul, y = logits_lse)[name = string("logits_chunk_11_sub_1")]; + tensor probs_chunk_11 = exp(x = logits_chunk_11_sub_1)[name = string("probs_chunk_11")]; + tensor mask_probs_chunk_11 = greater_equal(x = probs_chunk_11, y = min_p_thresh)[name = string("mask_probs_chunk_11")]; + string mask_chunk_11_fp16_dtype_0 = const()[name = string("mask_chunk_11_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_11_fp16 = cast(dtype = mask_chunk_11_fp16_dtype_0, x = mask_probs_chunk_11)[name = string("cast_90")]; + tensor masked_probs_chunk_11 = select(a = probs_chunk_11, b = mask_chunk_11_fp16, cond = mask_probs_chunk_11)[name = string("masked_probs_chunk_11")]; + tensor logits_chunk_12_sub_1 = sub(x = logits_chunk_12_mul, y = logits_lse)[name = string("logits_chunk_12_sub_1")]; + tensor probs_chunk_12 = exp(x = logits_chunk_12_sub_1)[name = string("probs_chunk_12")]; + tensor mask_probs_chunk_12 = greater_equal(x = probs_chunk_12, y = min_p_thresh)[name = string("mask_probs_chunk_12")]; + string mask_chunk_12_fp16_dtype_0 = const()[name = string("mask_chunk_12_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_12_fp16 = cast(dtype = mask_chunk_12_fp16_dtype_0, x = mask_probs_chunk_12)[name = string("cast_89")]; + tensor masked_probs_chunk_12 = select(a = probs_chunk_12, b = mask_chunk_12_fp16, cond = mask_probs_chunk_12)[name = string("masked_probs_chunk_12")]; + tensor logits_chunk_13_sub_1 = sub(x = logits_chunk_13_mul, y = logits_lse)[name = string("logits_chunk_13_sub_1")]; + tensor probs_chunk_13 = exp(x = logits_chunk_13_sub_1)[name = string("probs_chunk_13")]; + tensor mask_probs_chunk_13 = greater_equal(x = probs_chunk_13, y = min_p_thresh)[name = string("mask_probs_chunk_13")]; + string mask_chunk_13_fp16_dtype_0 = const()[name = string("mask_chunk_13_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_13_fp16 = cast(dtype = mask_chunk_13_fp16_dtype_0, x = mask_probs_chunk_13)[name = string("cast_88")]; + tensor masked_probs_chunk_13 = select(a = probs_chunk_13, b = mask_chunk_13_fp16, cond = mask_probs_chunk_13)[name = string("masked_probs_chunk_13")]; + tensor logits_chunk_14_sub_1 = sub(x = logits_chunk_14_mul, y = logits_lse)[name = string("logits_chunk_14_sub_1")]; + tensor probs_chunk_14 = exp(x = logits_chunk_14_sub_1)[name = string("probs_chunk_14")]; + tensor mask_probs_chunk_14 = greater_equal(x = probs_chunk_14, y = min_p_thresh)[name = string("mask_probs_chunk_14")]; + string mask_chunk_14_fp16_dtype_0 = const()[name = string("mask_chunk_14_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_14_fp16 = cast(dtype = mask_chunk_14_fp16_dtype_0, x = mask_probs_chunk_14)[name = string("cast_87")]; + tensor masked_probs_chunk_14 = select(a = probs_chunk_14, b = mask_chunk_14_fp16, cond = mask_probs_chunk_14)[name = string("masked_probs_chunk_14")]; + tensor logits_chunk_15_sub_1 = sub(x = logits_chunk_15_mul, y = logits_lse)[name = string("logits_chunk_15_sub_1")]; + tensor probs_chunk_15 = exp(x = logits_chunk_15_sub_1)[name = string("probs_chunk_15")]; + tensor mask_probs_chunk_15 = greater_equal(x = probs_chunk_15, y = min_p_thresh)[name = string("mask_probs_chunk_15")]; + string mask_chunk_15_fp16_dtype_0 = const()[name = string("mask_chunk_15_fp16_dtype_0"), val = string("fp16")]; + tensor mask_chunk_15_fp16 = cast(dtype = mask_chunk_15_fp16_dtype_0, x = mask_probs_chunk_15)[name = string("cast_86")]; + tensor masked_probs_chunk_15 = select(a = probs_chunk_15, b = mask_chunk_15_fp16, cond = mask_probs_chunk_15)[name = string("masked_probs_chunk_15")]; + int32 probs_axis_0 = const()[name = string("probs_axis_0"), val = int32(1)]; + bool probs_interleave_0 = const()[name = string("probs_interleave_0"), val = bool(false)]; + tensor probs = concat(axis = probs_axis_0, interleave = probs_interleave_0, values = (masked_probs_chunk_0, masked_probs_chunk_1, masked_probs_chunk_2, masked_probs_chunk_3, masked_probs_chunk_4, masked_probs_chunk_5, masked_probs_chunk_6, masked_probs_chunk_7, masked_probs_chunk_8, masked_probs_chunk_9, masked_probs_chunk_10, masked_probs_chunk_11, masked_probs_chunk_12, masked_probs_chunk_13, masked_probs_chunk_14, masked_probs_chunk_15))[name = string("probs")]; + string probs_fp32_dtype_0 = const()[name = string("probs_fp32_dtype_0"), val = string("fp32")]; + int32 probs_cumsum_axis_0 = const()[name = string("probs_cumsum_axis_0"), val = int32(1)]; + bool probs_cumsum_exclusive_0 = const()[name = string("probs_cumsum_exclusive_0"), val = bool(false)]; + bool probs_cumsum_reverse_0 = const()[name = string("probs_cumsum_reverse_0"), val = bool(false)]; + tensor probs_fp32 = cast(dtype = probs_fp32_dtype_0, x = probs)[name = string("cast_85")]; + tensor probs_cumsum = cumsum(axis = probs_cumsum_axis_0, exclusive = probs_cumsum_exclusive_0, reverse = probs_cumsum_reverse_0, x = probs_fp32)[name = string("probs_cumsum")]; + tensor probs_sum_indices_0 = const()[name = string("probs_sum_indices_0"), val = tensor([32767])]; + int32 probs_sum_axis_0 = const()[name = string("probs_sum_axis_0"), val = int32(1)]; + int32 probs_sum_batch_dims_0 = const()[name = string("probs_sum_batch_dims_0"), val = int32(0)]; + bool probs_sum_validate_indices_0 = const()[name = string("probs_sum_validate_indices_0"), val = bool(false)]; + tensor probs_sum = gather(axis = probs_sum_axis_0, batch_dims = probs_sum_batch_dims_0, indices = probs_sum_indices_0, validate_indices = probs_sum_validate_indices_0, x = probs_cumsum)[name = string("probs_sum")]; + tensor random_number_scaled = mul(x = random_number, y = probs_sum)[name = string("random_number_scaled")]; + tensor probs_greater = greater(x = probs_cumsum, y = random_number_scaled)[name = string("probs_greater")]; + string probs_greater_int32_dtype_0 = const()[name = string("probs_greater_int32_dtype_0"), val = string("int32")]; + int32 sampled_index_axis_0 = const()[name = string("sampled_index_axis_0"), val = int32(1)]; + bool sampled_index_keep_dims_0 = const()[name = string("sampled_index_keep_dims_0"), val = bool(true)]; + string sampled_index_output_dtype_0 = const()[name = string("sampled_index_output_dtype_0"), val = string("int32")]; + tensor probs_greater_int32 = cast(dtype = probs_greater_int32_dtype_0, x = probs_greater)[name = string("cast_84")]; + tensor sampled_index = reduce_argmax(axis = sampled_index_axis_0, keep_dims = sampled_index_keep_dims_0, output_dtype = sampled_index_output_dtype_0, x = probs_greater_int32)[name = string("sampled_index")]; + int32 sampled_index_probability_axis_0 = const()[name = string("sampled_index_probability_axis_0"), val = int32(1)]; + bool sampled_index_probability_validate_indices_0 = const()[name = string("sampled_index_probability_validate_indices_0"), val = bool(false)]; + tensor sampled_index_probability = gather_along_axis(axis = sampled_index_probability_axis_0, indices = sampled_index, validate_indices = sampled_index_probability_validate_indices_0, x = probs_fp32)[name = string("sampled_index_probability")]; + int32 max_logit_index_axis_0 = const()[name = string("max_logit_index_axis_0"), val = int32(1)]; + bool max_logit_index_keep_dims_0 = const()[name = string("max_logit_index_keep_dims_0"), val = bool(true)]; + string max_logit_index_output_dtype_0 = const()[name = string("max_logit_index_output_dtype_0"), val = string("int32")]; + tensor max_logit_index = reduce_argmax(axis = max_logit_index_axis_0, keep_dims = max_logit_index_keep_dims_0, output_dtype = max_logit_index_output_dtype_0, x = logits_max_logits_chunks)[name = string("max_logit_index")]; + string indices_chunk_0_int32_dtype_0 = const()[name = string("indices_chunk_0_int32_dtype_0"), val = string("int32")]; + string indices_chunk_1_int32_dtype_0 = const()[name = string("indices_chunk_1_int32_dtype_0"), val = string("int32")]; + string indices_chunk_2_int32_dtype_0 = const()[name = string("indices_chunk_2_int32_dtype_0"), val = string("int32")]; + string indices_chunk_3_int32_dtype_0 = const()[name = string("indices_chunk_3_int32_dtype_0"), val = string("int32")]; + string indices_chunk_4_int32_dtype_0 = const()[name = string("indices_chunk_4_int32_dtype_0"), val = string("int32")]; + string indices_chunk_5_int32_dtype_0 = const()[name = string("indices_chunk_5_int32_dtype_0"), val = string("int32")]; + string indices_chunk_6_int32_dtype_0 = const()[name = string("indices_chunk_6_int32_dtype_0"), val = string("int32")]; + string indices_chunk_7_int32_dtype_0 = const()[name = string("indices_chunk_7_int32_dtype_0"), val = string("int32")]; + string indices_chunk_8_int32_dtype_0 = const()[name = string("indices_chunk_8_int32_dtype_0"), val = string("int32")]; + string indices_chunk_9_int32_dtype_0 = const()[name = string("indices_chunk_9_int32_dtype_0"), val = string("int32")]; + string indices_chunk_10_int32_dtype_0 = const()[name = string("indices_chunk_10_int32_dtype_0"), val = string("int32")]; + string indices_chunk_11_int32_dtype_0 = const()[name = string("indices_chunk_11_int32_dtype_0"), val = string("int32")]; + string indices_chunk_12_int32_dtype_0 = const()[name = string("indices_chunk_12_int32_dtype_0"), val = string("int32")]; + string indices_chunk_13_int32_dtype_0 = const()[name = string("indices_chunk_13_int32_dtype_0"), val = string("int32")]; + string indices_chunk_14_int32_dtype_0 = const()[name = string("indices_chunk_14_int32_dtype_0"), val = string("int32")]; + string indices_chunk_15_int32_dtype_0 = const()[name = string("indices_chunk_15_int32_dtype_0"), val = string("int32")]; + int32 indices_axis_0 = const()[name = string("indices_axis_0"), val = int32(1)]; + bool indices_interleave_0 = const()[name = string("indices_interleave_0"), val = bool(false)]; + tensor indices_chunk_15_int32 = cast(dtype = indices_chunk_15_int32_dtype_0, x = logits_chunk_15_argmax)[name = string("cast_68")]; + tensor indices_chunk_14_int32 = cast(dtype = indices_chunk_14_int32_dtype_0, x = logits_chunk_14_argmax)[name = string("cast_69")]; + tensor indices_chunk_13_int32 = cast(dtype = indices_chunk_13_int32_dtype_0, x = logits_chunk_13_argmax)[name = string("cast_70")]; + tensor indices_chunk_12_int32 = cast(dtype = indices_chunk_12_int32_dtype_0, x = logits_chunk_12_argmax)[name = string("cast_71")]; + tensor indices_chunk_11_int32 = cast(dtype = indices_chunk_11_int32_dtype_0, x = logits_chunk_11_argmax)[name = string("cast_72")]; + tensor indices_chunk_10_int32 = cast(dtype = indices_chunk_10_int32_dtype_0, x = logits_chunk_10_argmax)[name = string("cast_73")]; + tensor indices_chunk_9_int32 = cast(dtype = indices_chunk_9_int32_dtype_0, x = logits_chunk_9_argmax)[name = string("cast_74")]; + tensor indices_chunk_8_int32 = cast(dtype = indices_chunk_8_int32_dtype_0, x = logits_chunk_8_argmax)[name = string("cast_75")]; + tensor indices_chunk_7_int32 = cast(dtype = indices_chunk_7_int32_dtype_0, x = logits_chunk_7_argmax)[name = string("cast_76")]; + tensor indices_chunk_6_int32 = cast(dtype = indices_chunk_6_int32_dtype_0, x = logits_chunk_6_argmax)[name = string("cast_77")]; + tensor indices_chunk_5_int32 = cast(dtype = indices_chunk_5_int32_dtype_0, x = logits_chunk_5_argmax)[name = string("cast_78")]; + tensor indices_chunk_4_int32 = cast(dtype = indices_chunk_4_int32_dtype_0, x = logits_chunk_4_argmax)[name = string("cast_79")]; + tensor indices_chunk_3_int32 = cast(dtype = indices_chunk_3_int32_dtype_0, x = logits_chunk_3_argmax)[name = string("cast_80")]; + tensor indices_chunk_2_int32 = cast(dtype = indices_chunk_2_int32_dtype_0, x = logits_chunk_2_argmax)[name = string("cast_81")]; + tensor indices_chunk_1_int32 = cast(dtype = indices_chunk_1_int32_dtype_0, x = logits_chunk_1_argmax)[name = string("cast_82")]; + tensor indices_chunk_0_int32 = cast(dtype = indices_chunk_0_int32_dtype_0, x = logits_chunk_0_argmax)[name = string("cast_83")]; + tensor indices = concat(axis = indices_axis_0, interleave = indices_interleave_0, values = (indices_chunk_0_int32, indices_chunk_1_int32, indices_chunk_2_int32, indices_chunk_3_int32, indices_chunk_4_int32, indices_chunk_5_int32, indices_chunk_6_int32, indices_chunk_7_int32, indices_chunk_8_int32, indices_chunk_9_int32, indices_chunk_10_int32, indices_chunk_11_int32, indices_chunk_12_int32, indices_chunk_13_int32, indices_chunk_14_int32, indices_chunk_15_int32))[name = string("indices")]; + int32 argmax_chunks_axis_0 = const()[name = string("argmax_chunks_axis_0"), val = int32(1)]; + bool argmax_chunks_validate_indices_0 = const()[name = string("argmax_chunks_validate_indices_0"), val = bool(false)]; + tensor argmax_chunks = gather_along_axis(axis = argmax_chunks_axis_0, indices = max_logit_index, validate_indices = argmax_chunks_validate_indices_0, x = indices)[name = string("argmax_chunks")]; + int32 mul_0_x_0 = const()[name = string("mul_0_x_0"), val = int32(2048)]; + tensor mul_0 = mul(x = mul_0_x_0, y = max_logit_index)[name = string("mul_0")]; + tensor argmax = add(x = argmax_chunks, y = mul_0)[name = string("argmax")]; + } -> (sampled_index, sampled_index_probability, argmax, max_prob); +} \ No newline at end of file