SentenceTransformer based on intfloat/multilingual-e5-large-instruct
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large-instruct
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'(1) \n2.2.8.1.(4) \n2.2.8.7.(1) \n2.4.2.3.(4) \nA-2.2.8.4.(1) \n3.1.13.1.(1) \n3.2.3.21.(1) \n3.2.5.16.',
'(1) \n2.2.8.1.(4) \n2.2.8.7.(1) \n2.4.2.3.(4) \nA-2.2.8.4.(1) \n3.1.13.1.(1) \n3.2.3.21.(1) \n3.2.5.16.',
'5) T h ec l e a r h e i g h ti na storage garage shall be not less than 2 m. \n6) Where garage floors or ramps are 600 mm or more above the adjacent ground \nor floor level, every opening through such floors and the perimeter of floors and ramps \nshall be provided with \na) a continuous curb not less than 140 mm high, a guard not less than 1 070 mm \nhigh, and a vehicle guardrail not less than 500 mm high conforming to \nSentence (7), or \nb) a full-height wall conforming to Sentence (7). \n7) Vehicle guardrails and full-height walls required in Sentence (6) shall \nbe designed and constructed to withstand the loading values stipulated in \nSentence 4.1.5.15.(1). \n8) Except for open-air storeys,e v e r y storey of a storage garage or repair garage located \nbelow grade shall be sprinklered. \n3.3.5.5. Repair Garage Separation \n1) A repair garage and any ancillary spaces serving it, including waiting rooms, \nreception rooms, tool and parts storage areas and supervisory office space, shall be \nseparated from other occupancies by a fire separation having a fire-resistance rating not \nless than 2 h. \n3.3.5.6. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,119 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 169.27 tokens
- max: 512 tokens
- min: 5 tokens
- mean: 169.27 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 Barrier-Free Design Principles. This Section contains minimum requirements for the design
of buildings that accommodate people with diverse abilities, across their lifespan, including, but not limited
to, people who use wheelchairs or other assistive mobility devices (e.g., walking aids, canes, crutches, braces,
prosthetics), people with personal care providers, people with hearing or vision loss, and people with service
animals, so they can access and use buildings.Barrier-Free Design Principles. This Section contains minimum requirements for the design
of buildings that accommodate people with diverse abilities, across their lifespan, including, but not limited
to, people who use wheelchairs or other assistive mobility devices (e.g., walking aids, canes, crutches, braces,
prosthetics), people with personal care providers, people with hearing or vision loss, and people with service
animals, so they can access and use buildings.(1)
and (2) could require installation of an automatic sprinkler system throughout all storeys of a building
regardless of options in Articles 3.2.2.20. to 3.2.2.92. to construct one or more storeys without installation of
sprinklers. It is the intent of the Code that all storeys below a storey in which an automatic sprinkler system
is installed should also be protected by an automatic sprinkler system to ensure that a fire in a lower storey
does not incapacitate the automatic sprinkler system or overwhelm an automatic sprinkler system in an upper
storey. Persons in an upper storey in which waivers or reductions of other fire safety systems are permitted
would be exposed to an increased risk from a fire on a lower storey. This concept also applies to situations
in which an automatic sprinkler system has been installed within a floor area in order to modify other safety
requirements applying within the floor area. If the uppermost storey or storeys of a building can be construc...(1)
and (2) could require installation of an automatic sprinkler system throughout all storeys of a building
regardless of options in Articles 3.2.2.20. to 3.2.2.92. to construct one or more storeys without installation of
sprinklers. It is the intent of the Code that all storeys below a storey in which an automatic sprinkler system
is installed should also be protected by an automatic sprinkler system to ensure that a fire in a lower storey
does not incapacitate the automatic sprinkler system or overwhelm an automatic sprinkler system in an upper
storey. Persons in an upper storey in which waivers or reductions of other fire safety systems are permitted
would be exposed to an increased risk from a fire on a lower storey. This concept also applies to situations
in which an automatic sprinkler system has been installed within a floor area in order to modify other safety
requirements applying within the floor area. If the uppermost storey or storeys of a building can be construc...(4)(a) and Articles 3.4.6.19. and 3.8.2.10. shall
be not less than 200 lx.
8) Lighting outlets in a building of residential occupancy shall be provided in
conformance with Subsection 9.34.2.(4)(a) and Articles 3.4.6.19. and 3.8.2.10. shall
be not less than 200 lx.
8) Lighting outlets in a building of residential occupancy shall be provided in
conformance with Subsection 9.34.2. - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
3.7594 | 500 | 0.0272 |
7.5188 | 1000 | 0.0007 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 863
Model tree for sbeiruty/embeddingFT
Base model
intfloat/multilingual-e5-large-instruct