Files changed (1) hide show
  1. readme +99 -0
readme ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # **Classification Models Repository**
2
+
3
+ Welcome to the repository containing multiple classification models trained and evaluated on a news classification task. Below, you'll find details about each model, including its functionality, performance metrics, and potential use cases.
4
+
5
+ ---
6
+
7
+ ## **Models Overview and Performance**
8
+
9
+ This repository includes the following models with their corresponding accuracies:
10
+
11
+ | Model Name | Accuracy |
12
+ |------------------------------|----------|
13
+ | Logistic Regression Model | 0.97 |
14
+ | Decision Tree Model | 0.94 |
15
+ | Gradient Boosting Classifier | 0.91 |
16
+ | Random Forest Classifier | 0.99 |
17
+
18
+ ---
19
+
20
+ ## **Model Descriptions**
21
+
22
+ ### **1. Logistic Regression Model**
23
+ #### Overview:
24
+ Logistic Regression is a statistical model used for binary or multiclass classification. It predicts the probability of an instance belonging to a specific class using a sigmoid function.
25
+
26
+ #### Features:
27
+ - Fast and computationally efficient.
28
+ - Performs well on linearly separable data.
29
+ - Provides probabilistic predictions.
30
+
31
+ #### Use Cases:
32
+ - Classifying Arabic news articles into predefined categories (e.g., politics, sports, technology).
33
+ - Interpretable model with coefficients indicating feature importance.
34
+
35
+ ---
36
+
37
+ ### **2. Decision Tree Model**
38
+ #### Overview:
39
+ The Decision Tree model builds a tree-like structure where each node represents a decision rule and each leaf represents a class label. It is simple yet powerful for many classification tasks.
40
+
41
+ #### Features:
42
+ - Easy to interpret and visualize.
43
+ - Handles both numerical and categorical data.
44
+ - Prone to overfitting on noisy data.
45
+
46
+ #### Use Cases:
47
+ - Classifying Arabic news articles into different categories.
48
+ - Tasks where interpretability is crucial.
49
+
50
+ ---
51
+
52
+ ### **3. Gradient Boosting Classifier**
53
+ #### Overview:
54
+ Gradient Boosting is an ensemble learning method that builds multiple weak learners (typically decision trees) and combines them to improve overall performance.
55
+
56
+ #### Features:
57
+ - Excellent for handling non-linear relationships.
58
+ - Robust to overfitting with proper hyperparameter tuning.
59
+ - Handles imbalanced datasets well.
60
+
61
+ #### Use Cases:
62
+ - Classifying complex Arabic news articles with nuanced patterns.
63
+ - Scenarios requiring high predictive performance.
64
+
65
+ ---
66
+
67
+ ### **4. Random Forest Classifier**
68
+ #### Overview:
69
+ Random Forest is a powerful ensemble method that builds multiple decision trees and averages their predictions to improve accuracy and reduce overfitting.
70
+
71
+ #### Features:
72
+ - High accuracy and robustness to noise.
73
+ - Handles large datasets with higher dimensionality.
74
+ - Reduces overfitting compared to individual decision trees.
75
+
76
+ #### Use Cases:
77
+ - Predicting the category of Arabic news articles.
78
+ - Applications requiring feature importance insights.
79
+
80
+ ---
81
+
82
+ ## **How to Use the Models**
83
+
84
+ All models are saved as `.joblib` files and can be easily loaded into your machine learning pipeline. Below is an example of how to use the **Random Forest Classifier** with Arabic news data:
85
+
86
+ ```python
87
+ import joblib
88
+
89
+ # Load the model
90
+ model = joblib.load("RandomForestClassifier_model.joblib")
91
+
92
+ # Example input: Arabic news text
93
+ input_data = [
94
+ "أعلن المنتخب الوطني المغربي عن التشكيلة الرسمية التي ستشارك في المباراة القادمة ضمن تصفيات كأس العالم."
95
+ ]
96
+
97
+ # Get prediction
98
+ prediction = model.predict(input_data)
99
+ print(f"Predicted class: {prediction}")