samuellimabraz's picture
End of training
501dd7c verified
metadata
base_model: google-t5/t5-small
datasets:
  - Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
  - rouge
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: ia3-finetune-t5-small-tweetsumm-1724776109
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: Andyrasika/TweetSumm-tuned
          type: Andyrasika/TweetSumm-tuned
        metrics:
          - type: rouge
            value: 0.3032
            name: Rouge1
          - type: f1
            value: 0.8624
            name: F1
          - type: precision
            value: 0.8604
            name: Precision
          - type: recall
            value: 0.8646
            name: Recall

ia3-finetune-t5-small-tweetsumm-1724776109

This model is a fine-tuned version of google-t5/t5-small on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4772
  • Rouge1: 0.3032
  • Rouge2: 0.1016
  • Rougel: 0.2431
  • Rougelsum: 0.2761
  • Gen Len: 49.7364
  • F1: 0.8624
  • Precision: 0.8604
  • Recall: 0.8646

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
3.074 1.0 110 2.7180 0.2578 0.07 0.2025 0.2348 49.7455 0.8554 0.8499 0.8613
2.8218 2.0 220 2.5242 0.2895 0.0902 0.2315 0.2639 49.7 0.8603 0.8578 0.863
2.5886 3.0 330 2.4772 0.3032 0.1016 0.2431 0.2761 49.7364 0.8624 0.8604 0.8646

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1