finetuned-clothes
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the clothes_simplifiedv2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2225
- Accuracy: 0.9417
Model description
This model classifies clothes category based on the given image.
Intended uses
You can use it in a jupyter notebook:
from PIL import Image
import requests
url = 'insert image url here'
image = Image.open(requests.get(url, stream=True).raw)
from transformers import AutoModelForImageClassification, AutoImageProcessor
repo_name = "samokosik/finetuned-clothes"
image_processor = AutoImageProcessor.from_pretrained(repo_name)
model = AutoModelForImageClassification.from_pretrained(repo_name)
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
print(encoding.pixel_values.shape)
import torch
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
Limitations
Due to lack of available data, we support only these categories: hat, longsleeve, outswear, pants, shoes, shorts, shortsleve.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7725 | 0.2058 | 100 | 0.7008 | 0.8178 |
0.5535 | 0.4115 | 200 | 0.4494 | 0.8994 |
0.4334 | 0.6173 | 300 | 0.3649 | 0.9169 |
0.3921 | 0.8230 | 400 | 0.3085 | 0.9184 |
0.3695 | 1.0288 | 500 | 0.3091 | 0.9184 |
0.2634 | 1.2346 | 600 | 0.3339 | 0.9082 |
0.4788 | 1.4403 | 700 | 0.2827 | 0.9257 |
0.3337 | 1.6461 | 800 | 0.2499 | 0.9344 |
0.34 | 1.8519 | 900 | 0.2586 | 0.9315 |
0.2424 | 2.0576 | 1000 | 0.2248 | 0.9402 |
0.1559 | 2.2634 | 1100 | 0.2333 | 0.9344 |
0.351 | 2.4691 | 1200 | 0.2495 | 0.9359 |
0.2206 | 2.6749 | 1300 | 0.2622 | 0.9242 |
0.3814 | 2.8807 | 1400 | 0.3138 | 0.9155 |
0.2141 | 3.0864 | 1500 | 0.2613 | 0.9315 |
0.112 | 3.2922 | 1600 | 0.2266 | 0.9402 |
0.0631 | 3.4979 | 1700 | 0.2255 | 0.9402 |
0.1986 | 3.7037 | 1800 | 0.2225 | 0.9417 |
0.2345 | 3.9095 | 1900 | 0.2235 | 0.9373 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
Training dataset
This model was trained on the following dataset: https://huggingface.co/datasets/samokosik/clothes_simplifiedv2
- Downloads last month
- 127
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for samokosik/finetuned-clothes
Base model
google/vit-base-patch16-224-in21k