salbatarni's picture
End of training
b610be7 verified
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_relevance_task7_fold1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_baseline_relevance_task7_fold1
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1811
- Qwk: 0.4857
- Mse: 0.1829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.3333 | 2 | 0.2365 | 0.3424 | 0.2296 |
| No log | 0.6667 | 4 | 0.2621 | 0.4112 | 0.2567 |
| No log | 1.0 | 6 | 0.3169 | 0.5670 | 0.3168 |
| No log | 1.3333 | 8 | 0.3023 | 0.5145 | 0.2938 |
| No log | 1.6667 | 10 | 0.2629 | 0.2310 | 0.2513 |
| No log | 2.0 | 12 | 0.2208 | 0.4676 | 0.2109 |
| No log | 2.3333 | 14 | 0.2071 | 0.5410 | 0.2005 |
| No log | 2.6667 | 16 | 0.1961 | 0.5410 | 0.1905 |
| No log | 3.0 | 18 | 0.1888 | 0.5093 | 0.1831 |
| No log | 3.3333 | 20 | 0.1855 | 0.5093 | 0.1806 |
| No log | 3.6667 | 22 | 0.1838 | 0.4967 | 0.1793 |
| No log | 4.0 | 24 | 0.1870 | 0.4857 | 0.1820 |
| No log | 4.3333 | 26 | 0.1864 | 0.4857 | 0.1822 |
| No log | 4.6667 | 28 | 0.1812 | 0.4857 | 0.1788 |
| No log | 5.0 | 30 | 0.1754 | 0.4857 | 0.1742 |
| No log | 5.3333 | 32 | 0.1723 | 0.4967 | 0.1722 |
| No log | 5.6667 | 34 | 0.1695 | 0.5695 | 0.1704 |
| No log | 6.0 | 36 | 0.1654 | 0.5695 | 0.1667 |
| No log | 6.3333 | 38 | 0.1652 | 0.5093 | 0.1667 |
| No log | 6.6667 | 40 | 0.1707 | 0.4857 | 0.1722 |
| No log | 7.0 | 42 | 0.1771 | 0.4857 | 0.1786 |
| No log | 7.3333 | 44 | 0.1814 | 0.4857 | 0.1829 |
| No log | 7.6667 | 46 | 0.1782 | 0.4857 | 0.1801 |
| No log | 8.0 | 48 | 0.1775 | 0.5389 | 0.1799 |
| No log | 8.3333 | 50 | 0.1799 | 0.5389 | 0.1824 |
| No log | 8.6667 | 52 | 0.1801 | 0.5389 | 0.1825 |
| No log | 9.0 | 54 | 0.1806 | 0.4857 | 0.1828 |
| No log | 9.3333 | 56 | 0.1816 | 0.4857 | 0.1837 |
| No log | 9.6667 | 58 | 0.1812 | 0.4857 | 0.1831 |
| No log | 10.0 | 60 | 0.1811 | 0.4857 | 0.1829 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1