sabroo's picture
End of training
2b824c9 verified
|
raw
history blame
2.26 kB
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-slovak-colab-CV17.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sk
          split: test
          args: sk
        metrics:
          - name: Wer
            type: wer
            value: 0.13279330117411486

w2v-bert-2.0-slovak-colab-CV17.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3002
  • Wer: 0.1328

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.3467 1.6393 300 0.3488 0.2605
0.1905 3.2787 600 0.3339 0.2059
0.1121 4.9180 900 0.3009 0.1849
0.0592 6.5574 1200 0.2817 0.1482
0.0264 8.1967 1500 0.3114 0.1385
0.0094 9.8361 1800 0.3002 0.1328

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1
  • Datasets 2.19.1
  • Tokenizers 0.20.1