metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-slovak-colab-CV17.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: sk
split: test
args: sk
metrics:
- name: Wer
type: wer
value: 0.13279330117411486
w2v-bert-2.0-slovak-colab-CV17.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3002
- Wer: 0.1328
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.3467 | 1.6393 | 300 | 0.3488 | 0.2605 |
0.1905 | 3.2787 | 600 | 0.3339 | 0.2059 |
0.1121 | 4.9180 | 900 | 0.3009 | 0.1849 |
0.0592 | 6.5574 | 1200 | 0.2817 | 0.1482 |
0.0264 | 8.1967 | 1500 | 0.3114 | 0.1385 |
0.0094 | 9.8361 | 1800 | 0.3002 | 0.1328 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.20.1