Improved Wildfire Spread Prediction with Time-Series Data and the WSTS+ Benchmark
Title: Improved Wildfire Spread Prediction with Time-Series Data and the WSTS+ Benchmark
Conference: IEEE Winter Conference on Applications of Computer Vision (WACV) 2026
Paper: arXiv
Dataset: Zenodo
Model Weights: HuggingFace
Repo:: GitHub
Authors: Saad Lahrichi, Jake Bova, Jesse Johnson, Jordan Malof
This repository extends the original WildfireSpreadTS benchmark with new models, improved training, and an expanded benchmark dataset, WSTS+.
Benchmark Results (AP ± Standard Deviation)
Mean Test AP for T = 1 and T = 5 Across Feature Sets
| Fusion Level | Model | Input Days | Veg | Multi | All | # Params |
|---|---|---|---|---|---|---|
| – | Res18-UNet (Gerard et al. 2023) | 1 | 0.328 ± 0.090 | 0.341 ± 0.085 | 0.341 ± 0.086 | 14.3M |
| Res18-UNet | 1 | 0.455 ± 0.090 | 0.468 ± 0.087 | 0.460 ± 0.084 | 14.3M | |
| Res50-Unet | 1 | 0.457 ± 0.089 | 0.459 ± 0.090 | 0.451 ± 0.093 | 32.5M | |
| SwinUnet | 1 | 0.432 ± 0.088 | 0.437 ± 0.082 | 0.424 ± 0.090 | 27.2M | |
| SegFormer | 1 | 0.433 ± 0.080 | 0.436 ± 0.083 | 0.423 ± 0.087 | 27.5M | |
| Data | Res18-UNet (Gerard et al. 2023) | 5 | 0.333 ± 0.079 | 0.344 ± 0.076 | 0.325 ± 0.108 | 14.4M |
| Res18-UNet | 5 | 0.472 ± 0.083 | 0.469 ± 0.087 | 0.460 ± 0.084 | 14.4M | |
| SwinUnet | 5 | 0.447 ± 0.087 | 0.453 ± 0.083 | 0.435 ± 0.079 | 27.3M | |
| SegFormer | 5 | 0.439 ± 0.081 | 0.436 ± 0.085 | 0.430 ± 0.082 | 27.7M | |
| Feature | UTAE (Gerard et al. 2023) | 5 | 0.372 ± 0.088 | 0.350 ± 0.113 | 0.321 ± 0.135 | 1.1M |
| UTAE | 5 | 0.452 ± 0.082 | 0.459 ± 0.088 | 0.433 ± 0.099 | 1.1M | |
| UTAE (Res18) | 5 | 0.478 ± 0.085 | 0.477 ± 0.089 | 0.475 ± 0.091 | 14.6M |
Datasets
WSTS+ (Extended Benchmark)
- Name: WSTS+
- Years: 2016–2018; 2021-2023
- Link: https://doi.org/10.48550/arXiv.2502.12003
Original WSTS Dataset
- Name: WildfireSpreadTS (WSTS)
- Years: 2018–2021
- Link: https://doi.org/10.5281/zenodo.8006177
Both datasets are compatible with the same preprocessing and training code in this repository.
Model Weights
We release our best T=1 and T=5 models (Res18-Unet and Res18-UTAE) as PyTorch .pth files containing the raw state_dict. They follow a consistent naming convention: fold_<foldID>_testAP<value>.pth and they are organized in folders by architecture (Res18UNet, Res18UTAE), temporal dimension (T=1 or T=5), and feature set used (Veg, Multi, or All).
Each model directory contains 12 files: one per cross-validation fold (fold_0 … fold_11). The filename includes the Test AP, allowing for easy identification of best- and worst-performing folds. Link: HuggingFace
Loading pretraind Models
We provide a utility script load_trained_model.py to allow for quickly loading the pretrained models. Example calls:
python load_trained_model.py \
--weights_path /path/to/unet/model/fold_X_testAP0.X.pth \
--model unet
Or for UTAE:
python load_trained_model.py \
--weights_path /path/to/utae/model/fold_Y_testAP0.Y.pth \
--model utae
Model Comparison Table
| Model | Parameters (M) | FLOPs (G) | Inference Time (ms) | GPU Memory (MB) | Model Size (MB) | Training Time (hours) | Test AP |
|---|---|---|---|---|---|---|---|
| ResNet18-UNet | 14.4 | 1.8 | 2.5±0.0 | 70 | 55 | 0.4 | 0.455 |
| ResNet50-UNet | 32.6 | 3.1 | 5.1±0.1 | 375 | 125 | 1.1 | 0.457 |
| SwinUnet | 27.2 | 6.1 | 8.9±0.0 | 526 | 106 | 1.8 | 0.432 |
| SegFormer-B2 | 27.5 | 3.7 | 12.7±0.8 | 865 | 105 | 2.0 | 0.448 |
| UTAE | 1.1 | 10.6 | 9.5±1.0 | 997 | 4 | 1.0 | 0.452 |
WSTS vs. WSTS+ Dataset Comparison
| Dataset | WSTS | WSTS+ | Increase (%) |
|---|---|---|---|
| Years | 4 (2018–2021) | 8 (2016–2023) | +100% |
| Fire Events | 607 | 1,005 | +65.6% |
| Total Images | 13,607 | 24,462 | +79.8% |
| Active Fire Pixels | 1,878,679 | 2,638,537 | +40.4% |
Citation
If you use this fork or the WSTS+ benchmark, please consider citing:
@inproceedings{
lahrichi2026improved,
title={Improved Wildfire Spread Prediction with Time-Series Data and the WSTS+ Benchmark},
author={Saad Lahrichi, Jake Bova, Jesse Johnson, Jordan Malof},
booktitle={IEEE Winter Conference on Applications of Computer Vision (WACV) 2026},
year={2026},
url={https://arxiv.org/abs/2502.12003}
}