Taurus 7B 1.0
Description
Taurus is an OpenHermes 2.5 finetune using the Economicus dataset, an instruct dataset synthetically generated from Economics PhD textbooks.
The model was trained for 2 epochs (QLoRA) using axolotl. The exact config I used can be found here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 66.40 |
AI2 Reasoning Challenge (25-Shot) | 63.57 |
HellaSwag (10-Shot) | 83.64 |
MMLU (5-Shot) | 63.50 |
TruthfulQA (0-shot) | 50.21 |
Winogrande (5-shot) | 78.14 |
GSM8k (5-shot) | 59.36 |
Prompt format
Taurus uses ChatML.
<|im_start|>system
System message
<|im_start|>user
User message<|im_end|>
<|im_start|>assistant
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_id = "rxavier/Taurus-7B-1.0"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, #torch.float16 for older GPUs
device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_config = GenerationConfig(
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed."
prompt = "Give me latex formulas for extended euler equations"
messages = [{"role": "system",
"content": system_message},
{"role": "user",
"content": prompt}]
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512)
print(tokenizer.decode(outputs.cpu().tolist()[0]))
GGUF quants
You can find GGUF quants for llama.cpp here.
- Downloads last month
- 88
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for rxavier/Taurus-7B-1.0
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard63.570
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard83.640
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.500
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard50.210
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.140
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard59.360