avis / avism /avism_model_coco.py
ruohguo's picture
Upload 117 files
b80ae90 verified
from typing import Tuple
import math
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from mask2former.modeling.criterion import SetCriterion
from mask2former.modeling.matcher import HungarianMatcher
from .modeling.avism_criterion import AvismSetCriterion
from .modeling.avism_matcher import AvismHungarianMatcher
from .modeling.transformer_decoder.avism_coco import Avism_COCO
@META_ARCH_REGISTRY.register()
class AVISM_COCO(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
size_divisibility: int,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
test_topk_per_image: int,
# avism
avism_module: nn.Module,
avism_criterion: nn.Module,
num_frames: int,
num_classes: int,
is_multi_cls: bool,
apply_cls_thres: float,
freeze_detector: bool,
test_run_chunk_size: int,
test_interpolate_chunk_size: int,
is_coco: bool,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.test_topk_per_image = test_topk_per_image
# avism hyper-parameters
self.num_frames = num_frames
self.num_classes = num_classes
self.vita_module = avism_module
self.vita_criterion = avism_criterion
self.is_multi_cls = is_multi_cls
self.apply_cls_thres = apply_cls_thres
if freeze_detector:
for name, p in self.named_parameters():
if not "vita_module" in name:
p.requires_grad_(False)
self.test_run_chunk_size = test_run_chunk_size
self.test_interpolate_chunk_size = test_interpolate_chunk_size
self.is_coco = is_coco
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
# Loss parameters:
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
avism_deep_supervision = cfg.MODEL.AVISM.DEEP_SUPERVISION
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
sim_weight = cfg.MODEL.AVISM.SIM_WEIGHT
# building criterion
matcher = HungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
if deep_supervision:
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
aux_weight_dict = {}
for i in range(dec_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ["labels", "masks"]
criterion = SetCriterion(
sem_seg_head.num_classes,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
avism_last_layer_num=cfg.MODEL.AVISM.LAST_LAYER_NUM,
)
# Avism
num_classes = sem_seg_head.num_classes
hidden_dim = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
avism_module = Avism_COCO(cfg=cfg, in_channels=hidden_dim, aux_loss=avism_deep_supervision)
# building criterion for avism inference
avism_matcher = AvismHungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
avism_weight_dict = {
"loss_avism_ce": class_weight, "loss_avism_mask": mask_weight, "loss_avism_dice": dice_weight
}
if sim_weight > 0.0:
avism_weight_dict["loss_avism_sim"] = sim_weight
if avism_deep_supervision:
avism_dec_layers = cfg.MODEL.AVISM.DEC_LAYERS
aux_weight_dict = {}
for i in range(avism_dec_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in avism_weight_dict.items()})
avism_weight_dict.update(aux_weight_dict)
avism_losses = ["avism_labels", "avism_masks"]
if sim_weight > 0.0:
avism_losses.append("fg_sim")
avism_criterion = AvismSetCriterion(
num_classes,
matcher=avism_matcher,
weight_dict=avism_weight_dict,
eos_coef=cfg.MODEL.AVISM.NO_OBJECT_WEIGHT,
losses=avism_losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
sim_use_clip=cfg.MODEL.AVISM.SIM_USE_CLIP,
)
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion": criterion,
"num_queries": cfg.MODEL.AVISM.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
# avism
"avism_module": avism_module,
"avism_criterion": avism_criterion,
"num_frames": cfg.INPUT.SAMPLING_FRAME_NUM,
"num_classes": num_classes,
"is_multi_cls": cfg.MODEL.AVISM.MULTI_CLS_ON,
"apply_cls_thres": cfg.MODEL.AVISM.APPLY_CLS_THRES,
"freeze_detector": cfg.MODEL.AVISM.FREEZE_DETECTOR,
"test_run_chunk_size": cfg.MODEL.AVISM.TEST_RUN_CHUNK_SIZE,
"test_interpolate_chunk_size": cfg.MODEL.AVISM.TEST_INTERPOLATE_CHUNK_SIZE,
"is_coco": cfg.DATASETS.TEST[0].startswith("coco"),
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
if self.training:
return self.train_model(batched_inputs)
else:
# NOTE consider only B=1 case.
return self.inference(batched_inputs[0])
def train_model(self, batched_inputs):
images = []
audio_features = []
for video in batched_inputs:
for frame in video["image"]:
images.append(frame.to(self.device))
for audio_feat in video["audio"]:
audio_features.append(torch.tensor(audio_feat).to(self.device))
audio_features = torch.stack(audio_features)
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
image_features = self.backbone(images.tensor)
BT = len(images)
T = self.num_frames if self.training else BT
B = BT // T
outputs, frame_queries, mask_features = self.sem_seg_head(image_features, audio_features)
mask_features = self.vita_module.vita_mask_features(mask_features)
mask_features = mask_features.view(B, self.num_frames, *mask_features.shape[-3:])
# mask classification target
frame_targets, clip_targets = self.prepare_targets(batched_inputs, images)
# bipartite matching-based loss
losses, fg_indices = self.criterion(outputs, frame_targets)
avism_outputs = self.vita_module(frame_queries, audio_features)
avism_outputs["pred_masks"] = torch.einsum("lbqc,btchw->lbqthw", avism_outputs["pred_mask_embed"], mask_features)
for out in avism_outputs["aux_outputs"]:
out["pred_masks"] = torch.einsum("lbqc,btchw->lbqthw", out["pred_mask_embed"], mask_features)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
avism_loss_dict = self.vita_criterion(avism_outputs, clip_targets, frame_targets, fg_indices)
avism_weight_dict = self.vita_criterion.weight_dict
for k in avism_loss_dict.keys():
if k in avism_weight_dict:
avism_loss_dict[k] *= avism_weight_dict[k]
losses.update(avism_loss_dict)
return losses
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
frame_gt_instances = []
clip_gt_instances = []
for targets_per_video in targets:
_num_instance = len(targets_per_video["instances"][0])
mask_shape = [_num_instance, self.num_frames, h_pad, w_pad]
gt_masks_per_video = torch.zeros(mask_shape, dtype=torch.bool, device=self.device)
gt_classes_per_video = targets_per_video["instances"][0].gt_classes.to(self.device)
gt_ids_per_video = []
for f_i, targets_per_frame in enumerate(targets_per_video["instances"]):
targets_per_frame = targets_per_frame.to(self.device)
h, w = targets_per_frame.image_size
_update_cls = gt_classes_per_video == -1
gt_classes_per_video[_update_cls] = targets_per_frame.gt_classes[_update_cls]
gt_ids_per_video.append(targets_per_frame.gt_ids)
if isinstance(targets_per_frame.gt_masks, BitMasks):
gt_masks_per_video[:, f_i, :h, :w] = targets_per_frame.gt_masks.tensor
else: #polygon
gt_masks_per_video[:, f_i, :h, :w] = targets_per_frame.gt_masks
gt_ids_per_video = torch.stack(gt_ids_per_video, dim=1)
gt_ids_per_video[gt_masks_per_video.sum(dim=(2,3)) == 0] = -1
valid_bool_frame = (gt_ids_per_video != -1)
valid_bool_clip = valid_bool_frame.any(dim=-1)
gt_classes_per_video = gt_classes_per_video[valid_bool_clip].long() # N,
gt_ids_per_video = gt_ids_per_video[valid_bool_clip].long() # N, num_frames
gt_masks_per_video = gt_masks_per_video[valid_bool_clip].float() # N, num_frames, H, W
valid_bool_frame = valid_bool_frame[valid_bool_clip]
if len(gt_ids_per_video) > 0:
min_id = max(gt_ids_per_video[valid_bool_frame].min(), 0)
gt_ids_per_video[valid_bool_frame] -= min_id
clip_gt_instances.append(
{
"labels": gt_classes_per_video, "ids": gt_ids_per_video, "masks": gt_masks_per_video,
"video_len": targets_per_video["length"], "frame_idx": targets_per_video["frame_idx"],
}
)
for f_i in range(self.num_frames):
_cls = gt_classes_per_video.clone()
_ids = gt_ids_per_video[:, f_i].clone()
_mask = gt_masks_per_video[:, f_i].clone()
valid = _ids != -1
frame_gt_instances.append({
"labels": _cls[valid],
"ids": _ids[valid],
"masks": _mask[valid],
})
return frame_gt_instances, clip_gt_instances
def inference(self, batched_inputs):
frame_queries, mask_features = [], []
num_frames = len(batched_inputs["image"])
to_store = self.device if num_frames <= 36 else "cpu"
audio_features = torch.tensor(batched_inputs["audio"]).to(self.device)
with torch.no_grad():
for i in range(math.ceil(num_frames / self.test_run_chunk_size)):
images = batched_inputs["image"][i*self.test_run_chunk_size : (i+1)*self.test_run_chunk_size]
images = [(x.to(self.device) - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
audio_features_chunk = audio_features[i*self.test_run_chunk_size : (i+1)*self.test_run_chunk_size]
features = self.backbone(images.tensor)
outputs, _frame_queries, _mask_features = self.sem_seg_head(features, audio_features_chunk)
_mask_features = self.vita_module.vita_mask_features(_mask_features)
# BT is 1 as runs per frame
frame_queries.append(_frame_queries[-1]) # T', fQ, C
mask_features.append(_mask_features.to(to_store)) # T', C, H, W
interim_size = images.tensor.shape[-2:]
image_size = images.image_sizes[0] # image size without padding after data augmentation
out_height = batched_inputs.get("height", image_size[0]) # raw image size before data augmentation
out_width = batched_inputs.get("width", image_size[1])
del outputs, images, batched_inputs
frame_queries = torch.cat(frame_queries)[None] # 1, T, fQ, C
mask_features = torch.cat(mask_features) # T, C, H, W
avism_outputs = self.vita_module(frame_queries, audio_features)
mask_cls = avism_outputs["pred_logits"][-1, 0] # cQ, K+1
mask_embed = avism_outputs["pred_mask_embed"][-1, 0] # cQ, C
del avism_outputs
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
num_topk = self.test_topk_per_image
scores_per_video, topk_indices = scores.flatten(0, 1).topk(num_topk, sorted=False)
labels_per_video = labels[topk_indices]
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode='floor')
mask_embed = mask_embed[topk_indices]
masks_per_video = []
numerator = torch.zeros(len(mask_embed), dtype=torch.float, device=self.device)
denominator = torch.zeros(len(mask_embed), dtype=torch.float, device=self.device)
for i in range(math.ceil(len(mask_features) / self.test_interpolate_chunk_size)):
m_f = mask_features[i*self.test_interpolate_chunk_size : (i+1)*self.test_interpolate_chunk_size].to(self.device)
mask_pred = torch.einsum("qc,tchw->qthw", mask_embed, m_f)
# upsample masks
mask_pred = retry_if_cuda_oom(F.interpolate)(
mask_pred,
size=interim_size,
mode="bilinear",
align_corners=False,
) # cQ, T, H, W
mask_pred = mask_pred[:, :, : image_size[0], : image_size[1]]
interim_mask_soft = mask_pred.sigmoid()
interim_mask_hard = interim_mask_soft > 0.5
numerator += (interim_mask_soft.flatten(1) * interim_mask_hard.flatten(1)).sum(1)
denominator += interim_mask_hard.flatten(1).sum(1)
mask_pred = F.interpolate(
mask_pred, size=(out_height, out_width), mode="bilinear", align_corners=False
) > 0.
masks_per_video.append(mask_pred.to(to_store))
masks_per_video = torch.cat(masks_per_video, dim=1)
scores_per_video *= (numerator / (denominator + 1e-6))
confidence = 0.3
indices = torch.nonzero(scores_per_video > confidence).squeeze(-1)
scores_per_video = scores_per_video[indices]
labels_per_video = labels_per_video[indices]
masks_per_video = masks_per_video[indices]
processed_results = {
"image_size": (out_height, out_width),
"pred_scores": scores_per_video.tolist(),
"pred_labels": labels_per_video.tolist(),
"pred_masks": masks_per_video.cpu(),
}
return processed_results