File size: 20,241 Bytes
b80ae90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from typing import Tuple
import math

import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom

from mask2former.modeling.criterion import SetCriterion
from mask2former.modeling.matcher import HungarianMatcher
from .modeling.avism_criterion import AvismSetCriterion
from .modeling.avism_matcher import AvismHungarianMatcher
from .modeling.transformer_decoder.avism_coco import Avism_COCO


@META_ARCH_REGISTRY.register()
class AVISM_COCO(nn.Module):
    """
    Main class for mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        criterion: nn.Module,
        num_queries: int,
        object_mask_threshold: float,
        overlap_threshold: float,
        metadata,
        size_divisibility: int,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        # inference
        test_topk_per_image: int,
        # avism
        avism_module: nn.Module,
        avism_criterion: nn.Module,
        num_frames: int,
        num_classes: int,
        is_multi_cls: bool,
        apply_cls_thres: float,
        freeze_detector: bool,
        test_run_chunk_size: int,
        test_interpolate_chunk_size: int,
        is_coco: bool,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            num_queries: int, number of queries
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.criterion = criterion
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.object_mask_threshold = object_mask_threshold
        self.metadata = metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # additional args
        self.test_topk_per_image = test_topk_per_image

        # avism hyper-parameters
        self.num_frames = num_frames
        self.num_classes = num_classes
        self.vita_module = avism_module
        self.vita_criterion = avism_criterion
        self.is_multi_cls = is_multi_cls
        self.apply_cls_thres = apply_cls_thres

        if freeze_detector:
            for name, p in self.named_parameters():
                if not "vita_module" in name:
                    p.requires_grad_(False)
        self.test_run_chunk_size = test_run_chunk_size
        self.test_interpolate_chunk_size = test_interpolate_chunk_size

        self.is_coco = is_coco

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())

        # Loss parameters:
        deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
        avism_deep_supervision = cfg.MODEL.AVISM.DEEP_SUPERVISION

        # loss weights
        class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
        dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
        mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
        sim_weight = cfg.MODEL.AVISM.SIM_WEIGHT

        # building criterion
        matcher = HungarianMatcher(
            cost_class=class_weight,
            cost_mask=mask_weight,
            cost_dice=dice_weight,
            num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
        )

        weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}

        if deep_supervision:
            dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        losses = ["labels", "masks"]

        criterion = SetCriterion(
            sem_seg_head.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
            num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
            oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
            importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
            avism_last_layer_num=cfg.MODEL.AVISM.LAST_LAYER_NUM,
        )

        # Avism
        num_classes = sem_seg_head.num_classes
        hidden_dim = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
        avism_module = Avism_COCO(cfg=cfg, in_channels=hidden_dim, aux_loss=avism_deep_supervision)

        # building criterion for avism inference
        avism_matcher = AvismHungarianMatcher(
            cost_class=class_weight,
            cost_mask=mask_weight,
            cost_dice=dice_weight,
            num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
        )
        avism_weight_dict = {
            "loss_avism_ce": class_weight, "loss_avism_mask": mask_weight, "loss_avism_dice": dice_weight
        }
        if sim_weight > 0.0:
            avism_weight_dict["loss_avism_sim"] = sim_weight

        if avism_deep_supervision:
            avism_dec_layers = cfg.MODEL.AVISM.DEC_LAYERS
            aux_weight_dict = {}
            for i in range(avism_dec_layers - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in avism_weight_dict.items()})
            avism_weight_dict.update(aux_weight_dict)
        avism_losses = ["avism_labels", "avism_masks"]
        if sim_weight > 0.0:
            avism_losses.append("fg_sim")

        avism_criterion = AvismSetCriterion(
            num_classes,
            matcher=avism_matcher,
            weight_dict=avism_weight_dict,
            eos_coef=cfg.MODEL.AVISM.NO_OBJECT_WEIGHT,
            losses=avism_losses,
            num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
            oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
            importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
            sim_use_clip=cfg.MODEL.AVISM.SIM_USE_CLIP,
        )

        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "criterion": criterion,
            "num_queries": cfg.MODEL.AVISM.NUM_OBJECT_QUERIES,
            "object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
            "overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
            "metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
            "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            # inference
            "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
            # avism
            "avism_module": avism_module,
            "avism_criterion": avism_criterion,
            "num_frames": cfg.INPUT.SAMPLING_FRAME_NUM,
            "num_classes": num_classes,
            "is_multi_cls": cfg.MODEL.AVISM.MULTI_CLS_ON,
            "apply_cls_thres": cfg.MODEL.AVISM.APPLY_CLS_THRES,
            "freeze_detector": cfg.MODEL.AVISM.FREEZE_DETECTOR,
            "test_run_chunk_size": cfg.MODEL.AVISM.TEST_RUN_CHUNK_SIZE,
            "test_interpolate_chunk_size": cfg.MODEL.AVISM.TEST_INTERPOLATE_CHUNK_SIZE,
            "is_coco": cfg.DATASETS.TEST[0].startswith("coco"),
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        if self.training:
            return self.train_model(batched_inputs)
        else:
            # NOTE consider only B=1 case.
            return self.inference(batched_inputs[0])

    def train_model(self, batched_inputs):
        images = []
        audio_features = []
        for video in batched_inputs:
            for frame in video["image"]:
                images.append(frame.to(self.device))
            for audio_feat in video["audio"]:
                audio_features.append(torch.tensor(audio_feat).to(self.device))

        audio_features = torch.stack(audio_features)
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        image_features = self.backbone(images.tensor)

        BT = len(images)
        T = self.num_frames if self.training else BT
        B = BT // T

        outputs, frame_queries, mask_features = self.sem_seg_head(image_features, audio_features)

        mask_features = self.vita_module.vita_mask_features(mask_features)
        mask_features = mask_features.view(B, self.num_frames, *mask_features.shape[-3:])

        # mask classification target
        frame_targets, clip_targets = self.prepare_targets(batched_inputs, images)

        # bipartite matching-based loss
        losses, fg_indices = self.criterion(outputs, frame_targets)

        avism_outputs = self.vita_module(frame_queries, audio_features)
        avism_outputs["pred_masks"] = torch.einsum("lbqc,btchw->lbqthw", avism_outputs["pred_mask_embed"], mask_features)
        for out in avism_outputs["aux_outputs"]:
            out["pred_masks"] = torch.einsum("lbqc,btchw->lbqthw", out["pred_mask_embed"], mask_features)

        for k in list(losses.keys()):
            if k in self.criterion.weight_dict:
                losses[k] *= self.criterion.weight_dict[k]
            else:
                # remove this loss if not specified in `weight_dict`
                losses.pop(k)
        avism_loss_dict = self.vita_criterion(avism_outputs, clip_targets, frame_targets, fg_indices)
        avism_weight_dict = self.vita_criterion.weight_dict

        for k in avism_loss_dict.keys():
            if k in avism_weight_dict:
                avism_loss_dict[k] *= avism_weight_dict[k]
        losses.update(avism_loss_dict)
        return losses

    def prepare_targets(self, targets, images):
        h_pad, w_pad = images.tensor.shape[-2:]
        frame_gt_instances = []
        clip_gt_instances = []
        for targets_per_video in targets:
            _num_instance = len(targets_per_video["instances"][0])
            mask_shape = [_num_instance, self.num_frames, h_pad, w_pad]
            gt_masks_per_video = torch.zeros(mask_shape, dtype=torch.bool, device=self.device)

            gt_classes_per_video = targets_per_video["instances"][0].gt_classes.to(self.device)
            gt_ids_per_video = []
            for f_i, targets_per_frame in enumerate(targets_per_video["instances"]):
                targets_per_frame = targets_per_frame.to(self.device)
                h, w = targets_per_frame.image_size

                _update_cls = gt_classes_per_video == -1
                gt_classes_per_video[_update_cls] = targets_per_frame.gt_classes[_update_cls]
                gt_ids_per_video.append(targets_per_frame.gt_ids)
                if isinstance(targets_per_frame.gt_masks, BitMasks):
                    gt_masks_per_video[:, f_i, :h, :w] = targets_per_frame.gt_masks.tensor
                else: #polygon
                    gt_masks_per_video[:, f_i, :h, :w] = targets_per_frame.gt_masks

            gt_ids_per_video = torch.stack(gt_ids_per_video, dim=1)
            gt_ids_per_video[gt_masks_per_video.sum(dim=(2,3)) == 0] = -1
            valid_bool_frame = (gt_ids_per_video != -1)
            valid_bool_clip = valid_bool_frame.any(dim=-1)

            gt_classes_per_video = gt_classes_per_video[valid_bool_clip].long() # N,
            gt_ids_per_video = gt_ids_per_video[valid_bool_clip].long()         # N, num_frames
            gt_masks_per_video = gt_masks_per_video[valid_bool_clip].float()    # N, num_frames, H, W
            valid_bool_frame = valid_bool_frame[valid_bool_clip]

            if len(gt_ids_per_video) > 0:
                min_id = max(gt_ids_per_video[valid_bool_frame].min(), 0)
                gt_ids_per_video[valid_bool_frame] -= min_id

            clip_gt_instances.append(
                {
                    "labels": gt_classes_per_video, "ids": gt_ids_per_video, "masks": gt_masks_per_video,
                    "video_len": targets_per_video["length"], "frame_idx": targets_per_video["frame_idx"],
                }
            )

            for f_i in range(self.num_frames):
                _cls = gt_classes_per_video.clone()
                _ids = gt_ids_per_video[:, f_i].clone()
                _mask = gt_masks_per_video[:, f_i].clone()

                valid = _ids != -1
                frame_gt_instances.append({
                    "labels": _cls[valid],
                    "ids": _ids[valid],
                    "masks": _mask[valid],
                })

        return frame_gt_instances, clip_gt_instances

    def inference(self, batched_inputs):
        frame_queries, mask_features = [], []
        num_frames = len(batched_inputs["image"])
        to_store = self.device if num_frames <= 36 else "cpu"

        audio_features = torch.tensor(batched_inputs["audio"]).to(self.device)

        with torch.no_grad():
            for i in range(math.ceil(num_frames / self.test_run_chunk_size)):
                images = batched_inputs["image"][i*self.test_run_chunk_size : (i+1)*self.test_run_chunk_size]
                images = [(x.to(self.device) - self.pixel_mean) / self.pixel_std for x in images]
                images = ImageList.from_tensors(images, self.size_divisibility)

                audio_features_chunk = audio_features[i*self.test_run_chunk_size : (i+1)*self.test_run_chunk_size]

                features = self.backbone(images.tensor)
                outputs, _frame_queries, _mask_features = self.sem_seg_head(features, audio_features_chunk)

                _mask_features = self.vita_module.vita_mask_features(_mask_features)

                # BT is 1 as runs per frame
                frame_queries.append(_frame_queries[-1])    # T', fQ, C
                mask_features.append(_mask_features.to(to_store))  # T', C, H, W

        interim_size = images.tensor.shape[-2:]
        image_size = images.image_sizes[0]  # image size without padding after data augmentation

        out_height = batched_inputs.get("height", image_size[0])  # raw image size before data augmentation
        out_width = batched_inputs.get("width", image_size[1])

        del outputs, images, batched_inputs

        frame_queries = torch.cat(frame_queries)[None]  # 1, T, fQ, C
        mask_features = torch.cat(mask_features)        # T, C, H, W

        avism_outputs = self.vita_module(frame_queries, audio_features)

        mask_cls = avism_outputs["pred_logits"][-1, 0]       # cQ, K+1
        mask_embed = avism_outputs["pred_mask_embed"][-1, 0] # cQ, C

        del avism_outputs

        scores = F.softmax(mask_cls, dim=-1)[:, :-1]
        labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)

        num_topk = self.test_topk_per_image
        scores_per_video, topk_indices = scores.flatten(0, 1).topk(num_topk, sorted=False)
        labels_per_video = labels[topk_indices]

        topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode='floor')
        mask_embed = mask_embed[topk_indices]

        masks_per_video = []
        numerator = torch.zeros(len(mask_embed), dtype=torch.float, device=self.device)
        denominator = torch.zeros(len(mask_embed), dtype=torch.float, device=self.device)
        for i in range(math.ceil(len(mask_features) / self.test_interpolate_chunk_size)):
            m_f = mask_features[i*self.test_interpolate_chunk_size : (i+1)*self.test_interpolate_chunk_size].to(self.device)

            mask_pred = torch.einsum("qc,tchw->qthw", mask_embed, m_f)

            # upsample masks
            mask_pred = retry_if_cuda_oom(F.interpolate)(
                mask_pred,
                size=interim_size,
                mode="bilinear",
                align_corners=False,
            ) # cQ, T, H, W

            mask_pred = mask_pred[:, :, : image_size[0], : image_size[1]]

            interim_mask_soft = mask_pred.sigmoid()
            interim_mask_hard = interim_mask_soft > 0.5

            numerator += (interim_mask_soft.flatten(1) * interim_mask_hard.flatten(1)).sum(1)
            denominator += interim_mask_hard.flatten(1).sum(1)

            mask_pred = F.interpolate(
                mask_pred, size=(out_height, out_width), mode="bilinear", align_corners=False
            ) > 0.
            masks_per_video.append(mask_pred.to(to_store))
        masks_per_video = torch.cat(masks_per_video, dim=1)
        scores_per_video *= (numerator / (denominator + 1e-6))

        confidence = 0.3
        indices = torch.nonzero(scores_per_video > confidence).squeeze(-1)
        scores_per_video = scores_per_video[indices]
        labels_per_video = labels_per_video[indices]
        masks_per_video = masks_per_video[indices]

        processed_results = {
            "image_size": (out_height, out_width),
            "pred_scores": scores_per_video.tolist(),
            "pred_labels": labels_per_video.tolist(),
            "pred_masks": masks_per_video.cpu(),
        }

        return processed_results