|
--- |
|
license: mit |
|
datasets: |
|
- ruili0/LongVA-TPO-10k |
|
base_model: |
|
- lmms-lab/LongVA-7B |
|
library_name: transformers |
|
pipeline_tag: video-text-to-text |
|
--- |
|
|
|
<a href='https://arxiv.org/abs/2501.13919v2'><img src='https://img.shields.io/badge/arXiv-paper-red'></a><a href='https://ruili33.github.io/tpo_website/'><img src='https://img.shields.io/badge/project-TPO-blue'></a><a href='https://huggingface.co/collections/ruili0/temporal-preference-optimization-67874b451f65db189fa35e10'><img src='https://img.shields.io/badge/huggingface-datasets-green'></a> |
|
<a href='https://huggingface.co/collections/ruili0/temporal-preference-optimization-67874b451f65db189fa35e10'><img src='https://img.shields.io/badge/model-checkpoints-yellow'></a> |
|
<a href='https://github.com/ruili33/TPO'><img src='https://img.shields.io/badge/github-repository-purple'></a> |
|
<img src="cvpr_figure_TPO.png"></img> |
|
# LongVA-7B-TPO |
|
|
|
This repository contains the model described in the paper [Temporal Preference Optimization for Long-form Video Understanding](https://huggingface.co/papers/2501.13919). |
|
|
|
LongVA-7B-TPO, introduced by paper [Temporal Preference Optimization for Long-form Video Understanding](https://huggingface.co/papers/2501.13919v1), optimized |
|
by temporal preference based on LongVA-7B. The LongVA-7B-TPO model establishes state-of-the-art performance across a range of |
|
benchmarks, demonstrating an average performance improvement of 2% compared to LongVA-7B. |
|
|
|
|
|
|
|
|
|
## Evaluation Results |
|
| **Model** | **Size** | **LongVideoBench** | **MLVU** | **VideoMME (Short)** | **VideoMME (Medium)** | **VideoMME (Long)** | **VideoMME (Average)** | |
|
|-------------------------------------|----------|---------------------|----------|----------------------|-----------------------|----------------------|-------------------------| |
|
| **LongVA-7B [1]** | 7B | 51.3 | 58.8 | 61.3/61.6 | 50.4/53.6 | 46.2/47.6 | 52.6/54.3 | |
|
| **LongVA-TPO (ours)** | 7B | **54.2** | **61.7** | **63.1/66.6** | **54.8/55.3** | **47.4/47.9** | **55.1/56.6** | |
|
|
|
## Get Started |
|
|
|
Use the code below to get started with the model. For more information, please refer to our [github repository](https://github.com/ruili33/TPO). |
|
|
|
``` |
|
from longva.model.builder import load_pretrained_model |
|
from longva.mm_utils import tokenizer_image_token, process_images |
|
from longva.constants import IMAGE_TOKEN_INDEX |
|
from PIL import Image |
|
from decord import VideoReader, cpu |
|
import torch |
|
import numpy as np |
|
# fix seed |
|
torch.manual_seed(0) |
|
|
|
model_path = "ruili0/LongVA-TPO" |
|
image_path = "local_demo/assets/lmms-eval.png" |
|
video_path = "local_demo/assets/dc_demo.mp4" |
|
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :) |
|
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024} |
|
# you can also set the device map to auto to accomodate more frames |
|
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0") |
|
|
|
|
|
#image input |
|
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nDescribe the image in details.<|im_end|>\n<|im_start|>assistant\n" |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) |
|
image = Image.open(image_path).convert("RGB") |
|
images_tensor = process_images([image], image_processor, model.config).to(model.device, dtype=torch.float16) |
|
with torch.inference_mode(): |
|
output_ids = model.generate(input_ids, images=images_tensor, image_sizes=[image.size], modalities=["image"], **gen_kwargs) |
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
print(outputs) |
|
print("-"*50) |
|
|
|
#video input |
|
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nGive a detailed caption of the video as if I am blind.<|im_end|>\n<|im_start|>assistant\n" |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) |
|
vr = VideoReader(video_path, ctx=cpu(0)) |
|
total_frame_num = len(vr) |
|
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) |
|
frame_idx = uniform_sampled_frames.tolist() |
|
frames = vr.get_batch(frame_idx).asnumpy() |
|
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16) |
|
with torch.inference_mode(): |
|
output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], **gen_kwargs) |
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
print(outputs) |
|
``` |
|
|
|
## License |
|
|
|
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the OpenAI Terms of Use for the dataset and the specific licenses for base language models (Qwen2 license). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations. |
|
|
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
``` |
|
@article{li2025temporal, |
|
title={Temporal Preference Optimization for Long-Form Video Understanding}, |
|
author={Li, Rui and Wang, Xiaohan and Zhang, Yuhui and Wang, Zeyu and Yeung-Levy, Serena}, |
|
journal={arXiv preprint arXiv:2501.13919}, |
|
year={2025} |
|
} |
|
``` |
|
|
|
**References:** |
|
|
|
|
|
[1]. Zhang, P., Zhang, K., Li, B., Zeng, G., Yang, J., Zhang, Y., ... & Liu, Z. (2024). Long context transfer from language to vision. arXiv preprint arXiv:2406.16852. |