dna2vec / modeling_dna2vec.py
yigitturali's picture
Upload DNAEncoder
1182d14 verified
raw
history blame
3.87 kB
from .configuration_dna2vec import DNAEncoderConfig
from transformers import PreTrainedModel
import math
from typing import Literal, Optional
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(
self,
vocab_size: int = 4,
embedding_dim: int = 384,
dim_feedforward: int = 1536,
num_heads: int = 12,
num_layers: int = 6,
dropout: float = 0.1,
activation: Literal["relu", "gelu"] = "gelu",
pos_embedding: Optional[str] = "SinusoidalPositionalEncoding",
max_position_embeddings: int = 1024,
):
"""
Default values taken from miniLM v6
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
"""
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.dropout = dropout
self.num_heads = num_heads
self.num_layers = num_layers
self.emb_dropout = nn.Dropout(p=dropout)
if pos_embedding == "SinusoidalPositionalEncoding":
position = torch.arange(max_position_embeddings).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, embedding_dim, 2) * (-math.log(10000.0) / embedding_dim)
)
pe = torch.zeros(max_position_embeddings, 1, embedding_dim)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
pe = pe.squeeze(1).unsqueeze(0)
self.register_buffer("positional_embedding", pe)
else:
raise ValueError(f"Positional embedding {pos_embedding} not found")
self.embedding = nn.Embedding(
num_embeddings=vocab_size,
embedding_dim=embedding_dim,
)
# create encode layers
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim,
nhead=num_heads,
dim_feedforward=dim_feedforward,
dropout=dropout,
activation=activation,
batch_first=True,
norm_first=True, # following: https://arxiv.org/pdf/2002.04745.pdf
)
self.trf_encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer, num_layers=num_layers
)
def forward(
self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
# input_ids.names = ["batch", "sequence"]
# embedding does not support named tensors
# Embed
emb = self.emb_dropout(
self.embedding(input_ids) + self.positional_embedding[:, :input_ids.size(1), :]
)
# emb.names = ["batch", "sequence", "embedding"]
# Contextualize embeddings
attn = None
if attention_mask is not None:
attn = attention_mask == 0 # to boolean
out = self.trf_encoder(emb, src_key_padding_mask=attn)
# out.names = ["batch", "sequence", "embedding"]
return out
class DNAEncoder(PreTrainedModel):
config_class = DNAEncoderConfig
def __init__(self, config: DNAEncoderConfig):
super().__init__(config)
self.config = config
self.encoder = Encoder(
vocab_size=config.vocab_size,
embedding_dim=config.embedding_dim,
dim_feedforward=config.dim_feedforward,
num_heads=config.num_heads,
num_layers=config.num_layers,
dropout=config.dropout,
activation=config.activation,
max_position_embeddings=config.max_position_embeddings,
)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
return self.encoder(input_ids, attention_mask)