yigitturali commited on
Commit
1182d14
·
verified ·
1 Parent(s): 8b345a7

Upload DNAEncoder

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +21 -0
  3. configuration_dna2vec.py +30 -0
  4. model.safetensors +3 -0
  5. modeling_dna2vec.py +108 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "DNAEncoder"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_dna2vec.DNAEncoderConfig",
8
+ "AutoModel": "modeling_dna2vec.DNAEncoder"
9
+ },
10
+ "dim_feedforward": 1536,
11
+ "dropout": 0.1,
12
+ "embedding_dim": 1020,
13
+ "max_position_embeddings": 1024,
14
+ "model_type": "dna_encoder",
15
+ "num_heads": 12,
16
+ "num_layers": 6,
17
+ "pos_embedding": "SinusoidalPositionalEncoding",
18
+ "torch_dtype": "float32",
19
+ "transformers_version": "4.48.3",
20
+ "vocab_size": 10004
21
+ }
configuration_dna2vec.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import Literal, Optional
3
+
4
+ class DNAEncoderConfig(PretrainedConfig):
5
+ model_type = "dna_encoder"
6
+
7
+ def __init__(
8
+ self,
9
+ vocab_size: int = 4,
10
+ embedding_dim: int = 384,
11
+ dim_feedforward: int = 1536,
12
+ num_heads: int = 12,
13
+ num_layers: int = 6,
14
+ dropout: float = 0.1,
15
+ activation: Literal["relu", "gelu"] = "gelu",
16
+ pos_embedding: Optional[str] = "SinusoidalPositionalEncoding",
17
+ max_position_embeddings: int = 1024,
18
+ **kwargs
19
+ ):
20
+ self.vocab_size = vocab_size
21
+ self.embedding_dim = embedding_dim
22
+ self.dim_feedforward = dim_feedforward
23
+ self.num_heads = num_heads
24
+ self.num_layers = num_layers
25
+ self.dropout = dropout
26
+ self.activation = activation
27
+ self.pos_embedding = pos_embedding
28
+ self.max_position_embeddings = max_position_embeddings
29
+
30
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:629788c307b5ea728313d9beedae989568aeed4fc50ced7901de4f1cabecce56
3
+ size 220341040
modeling_dna2vec.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .configuration_dna2vec import DNAEncoderConfig
2
+ from transformers import PreTrainedModel
3
+ import math
4
+ from typing import Literal, Optional
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ class Encoder(nn.Module):
9
+ def __init__(
10
+ self,
11
+ vocab_size: int = 4,
12
+ embedding_dim: int = 384,
13
+ dim_feedforward: int = 1536,
14
+ num_heads: int = 12,
15
+ num_layers: int = 6,
16
+ dropout: float = 0.1,
17
+ activation: Literal["relu", "gelu"] = "gelu",
18
+ pos_embedding: Optional[str] = "SinusoidalPositionalEncoding",
19
+ max_position_embeddings: int = 1024,
20
+ ):
21
+ """
22
+ Default values taken from miniLM v6
23
+ https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
24
+ """
25
+ super().__init__()
26
+ self.vocab_size = vocab_size
27
+ self.embedding_dim = embedding_dim
28
+ self.dropout = dropout
29
+ self.num_heads = num_heads
30
+ self.num_layers = num_layers
31
+ self.emb_dropout = nn.Dropout(p=dropout)
32
+
33
+ if pos_embedding == "SinusoidalPositionalEncoding":
34
+ position = torch.arange(max_position_embeddings).unsqueeze(1)
35
+ div_term = torch.exp(
36
+ torch.arange(0, embedding_dim, 2) * (-math.log(10000.0) / embedding_dim)
37
+ )
38
+ pe = torch.zeros(max_position_embeddings, 1, embedding_dim)
39
+ pe[:, 0, 0::2] = torch.sin(position * div_term)
40
+ pe[:, 0, 1::2] = torch.cos(position * div_term)
41
+ pe = pe.squeeze(1).unsqueeze(0)
42
+ self.register_buffer("positional_embedding", pe)
43
+ else:
44
+ raise ValueError(f"Positional embedding {pos_embedding} not found")
45
+
46
+ self.embedding = nn.Embedding(
47
+ num_embeddings=vocab_size,
48
+ embedding_dim=embedding_dim,
49
+ )
50
+
51
+ # create encode layers
52
+ encoder_layer = nn.TransformerEncoderLayer(
53
+ d_model=embedding_dim,
54
+ nhead=num_heads,
55
+ dim_feedforward=dim_feedforward,
56
+ dropout=dropout,
57
+ activation=activation,
58
+ batch_first=True,
59
+ norm_first=True, # following: https://arxiv.org/pdf/2002.04745.pdf
60
+ )
61
+ self.trf_encoder = nn.TransformerEncoder(
62
+ encoder_layer=encoder_layer, num_layers=num_layers
63
+ )
64
+
65
+ def forward(
66
+ self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
67
+ ) -> torch.Tensor:
68
+ # input_ids.names = ["batch", "sequence"]
69
+ # embedding does not support named tensors
70
+
71
+ # Embed
72
+ emb = self.emb_dropout(
73
+ self.embedding(input_ids) + self.positional_embedding[:, :input_ids.size(1), :]
74
+ )
75
+ # emb.names = ["batch", "sequence", "embedding"]
76
+
77
+ # Contextualize embeddings
78
+ attn = None
79
+ if attention_mask is not None:
80
+ attn = attention_mask == 0 # to boolean
81
+ out = self.trf_encoder(emb, src_key_padding_mask=attn)
82
+ # out.names = ["batch", "sequence", "embedding"]
83
+ return out
84
+
85
+ class DNAEncoder(PreTrainedModel):
86
+ config_class = DNAEncoderConfig
87
+
88
+ def __init__(self, config: DNAEncoderConfig):
89
+ super().__init__(config)
90
+ self.config = config
91
+ self.encoder = Encoder(
92
+ vocab_size=config.vocab_size,
93
+ embedding_dim=config.embedding_dim,
94
+ dim_feedforward=config.dim_feedforward,
95
+ num_heads=config.num_heads,
96
+ num_layers=config.num_layers,
97
+ dropout=config.dropout,
98
+ activation=config.activation,
99
+ max_position_embeddings=config.max_position_embeddings,
100
+ )
101
+
102
+ def forward(
103
+ self,
104
+ input_ids: torch.Tensor,
105
+ attention_mask: Optional[torch.Tensor] = None,
106
+ **kwargs,
107
+ ) -> torch.Tensor:
108
+ return self.encoder(input_ids, attention_mask)