Upload DNAEncoder
Browse files- README.md +199 -0
- config.json +21 -0
- configuration_dna2vec.py +30 -0
- model.safetensors +3 -0
- modeling_dna2vec.py +108 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DNAEncoder"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_dna2vec.DNAEncoderConfig",
|
8 |
+
"AutoModel": "modeling_dna2vec.DNAEncoder"
|
9 |
+
},
|
10 |
+
"dim_feedforward": 1536,
|
11 |
+
"dropout": 0.1,
|
12 |
+
"embedding_dim": 1020,
|
13 |
+
"max_position_embeddings": 1024,
|
14 |
+
"model_type": "dna_encoder",
|
15 |
+
"num_heads": 12,
|
16 |
+
"num_layers": 6,
|
17 |
+
"pos_embedding": "SinusoidalPositionalEncoding",
|
18 |
+
"torch_dtype": "float32",
|
19 |
+
"transformers_version": "4.48.3",
|
20 |
+
"vocab_size": 10004
|
21 |
+
}
|
configuration_dna2vec.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import Literal, Optional
|
3 |
+
|
4 |
+
class DNAEncoderConfig(PretrainedConfig):
|
5 |
+
model_type = "dna_encoder"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
vocab_size: int = 4,
|
10 |
+
embedding_dim: int = 384,
|
11 |
+
dim_feedforward: int = 1536,
|
12 |
+
num_heads: int = 12,
|
13 |
+
num_layers: int = 6,
|
14 |
+
dropout: float = 0.1,
|
15 |
+
activation: Literal["relu", "gelu"] = "gelu",
|
16 |
+
pos_embedding: Optional[str] = "SinusoidalPositionalEncoding",
|
17 |
+
max_position_embeddings: int = 1024,
|
18 |
+
**kwargs
|
19 |
+
):
|
20 |
+
self.vocab_size = vocab_size
|
21 |
+
self.embedding_dim = embedding_dim
|
22 |
+
self.dim_feedforward = dim_feedforward
|
23 |
+
self.num_heads = num_heads
|
24 |
+
self.num_layers = num_layers
|
25 |
+
self.dropout = dropout
|
26 |
+
self.activation = activation
|
27 |
+
self.pos_embedding = pos_embedding
|
28 |
+
self.max_position_embeddings = max_position_embeddings
|
29 |
+
|
30 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:629788c307b5ea728313d9beedae989568aeed4fc50ced7901de4f1cabecce56
|
3 |
+
size 220341040
|
modeling_dna2vec.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .configuration_dna2vec import DNAEncoderConfig
|
2 |
+
from transformers import PreTrainedModel
|
3 |
+
import math
|
4 |
+
from typing import Literal, Optional
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
class Encoder(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
vocab_size: int = 4,
|
12 |
+
embedding_dim: int = 384,
|
13 |
+
dim_feedforward: int = 1536,
|
14 |
+
num_heads: int = 12,
|
15 |
+
num_layers: int = 6,
|
16 |
+
dropout: float = 0.1,
|
17 |
+
activation: Literal["relu", "gelu"] = "gelu",
|
18 |
+
pos_embedding: Optional[str] = "SinusoidalPositionalEncoding",
|
19 |
+
max_position_embeddings: int = 1024,
|
20 |
+
):
|
21 |
+
"""
|
22 |
+
Default values taken from miniLM v6
|
23 |
+
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
|
24 |
+
"""
|
25 |
+
super().__init__()
|
26 |
+
self.vocab_size = vocab_size
|
27 |
+
self.embedding_dim = embedding_dim
|
28 |
+
self.dropout = dropout
|
29 |
+
self.num_heads = num_heads
|
30 |
+
self.num_layers = num_layers
|
31 |
+
self.emb_dropout = nn.Dropout(p=dropout)
|
32 |
+
|
33 |
+
if pos_embedding == "SinusoidalPositionalEncoding":
|
34 |
+
position = torch.arange(max_position_embeddings).unsqueeze(1)
|
35 |
+
div_term = torch.exp(
|
36 |
+
torch.arange(0, embedding_dim, 2) * (-math.log(10000.0) / embedding_dim)
|
37 |
+
)
|
38 |
+
pe = torch.zeros(max_position_embeddings, 1, embedding_dim)
|
39 |
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
40 |
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
41 |
+
pe = pe.squeeze(1).unsqueeze(0)
|
42 |
+
self.register_buffer("positional_embedding", pe)
|
43 |
+
else:
|
44 |
+
raise ValueError(f"Positional embedding {pos_embedding} not found")
|
45 |
+
|
46 |
+
self.embedding = nn.Embedding(
|
47 |
+
num_embeddings=vocab_size,
|
48 |
+
embedding_dim=embedding_dim,
|
49 |
+
)
|
50 |
+
|
51 |
+
# create encode layers
|
52 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
53 |
+
d_model=embedding_dim,
|
54 |
+
nhead=num_heads,
|
55 |
+
dim_feedforward=dim_feedforward,
|
56 |
+
dropout=dropout,
|
57 |
+
activation=activation,
|
58 |
+
batch_first=True,
|
59 |
+
norm_first=True, # following: https://arxiv.org/pdf/2002.04745.pdf
|
60 |
+
)
|
61 |
+
self.trf_encoder = nn.TransformerEncoder(
|
62 |
+
encoder_layer=encoder_layer, num_layers=num_layers
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(
|
66 |
+
self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
|
67 |
+
) -> torch.Tensor:
|
68 |
+
# input_ids.names = ["batch", "sequence"]
|
69 |
+
# embedding does not support named tensors
|
70 |
+
|
71 |
+
# Embed
|
72 |
+
emb = self.emb_dropout(
|
73 |
+
self.embedding(input_ids) + self.positional_embedding[:, :input_ids.size(1), :]
|
74 |
+
)
|
75 |
+
# emb.names = ["batch", "sequence", "embedding"]
|
76 |
+
|
77 |
+
# Contextualize embeddings
|
78 |
+
attn = None
|
79 |
+
if attention_mask is not None:
|
80 |
+
attn = attention_mask == 0 # to boolean
|
81 |
+
out = self.trf_encoder(emb, src_key_padding_mask=attn)
|
82 |
+
# out.names = ["batch", "sequence", "embedding"]
|
83 |
+
return out
|
84 |
+
|
85 |
+
class DNAEncoder(PreTrainedModel):
|
86 |
+
config_class = DNAEncoderConfig
|
87 |
+
|
88 |
+
def __init__(self, config: DNAEncoderConfig):
|
89 |
+
super().__init__(config)
|
90 |
+
self.config = config
|
91 |
+
self.encoder = Encoder(
|
92 |
+
vocab_size=config.vocab_size,
|
93 |
+
embedding_dim=config.embedding_dim,
|
94 |
+
dim_feedforward=config.dim_feedforward,
|
95 |
+
num_heads=config.num_heads,
|
96 |
+
num_layers=config.num_layers,
|
97 |
+
dropout=config.dropout,
|
98 |
+
activation=config.activation,
|
99 |
+
max_position_embeddings=config.max_position_embeddings,
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
input_ids: torch.Tensor,
|
105 |
+
attention_mask: Optional[torch.Tensor] = None,
|
106 |
+
**kwargs,
|
107 |
+
) -> torch.Tensor:
|
108 |
+
return self.encoder(input_ids, attention_mask)
|