See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 793d7a595eea5026_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/793d7a595eea5026_train_data.json
type:
field_instruction: inputs
field_output: targets
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/ec82bdf0-1c38-4767-90a4-49691d3946fb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7680
micro_batch_size: 4
mlflow_experiment_name: /tmp/793d7a595eea5026_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.024532412223029067
wandb_entity: null
wandb_mode: online
wandb_name: 3ac4752d-41eb-417c-8944-fd4d6582c896
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3ac4752d-41eb-417c-8944-fd4d6582c896
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
ec82bdf0-1c38-4767-90a4-49691d3946fb
This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7272
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 7680
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1051 | 0.0002 | 1 | 2.4445 |
2.6218 | 0.0161 | 100 | 2.2324 |
1.903 | 0.0322 | 200 | 2.1711 |
1.8631 | 0.0483 | 300 | 2.1264 |
2.4634 | 0.0644 | 400 | 2.0912 |
2.1012 | 0.0805 | 500 | 2.0665 |
2.3333 | 0.0966 | 600 | 2.0488 |
1.9606 | 0.1127 | 700 | 2.0289 |
1.9752 | 0.1288 | 800 | 2.0109 |
1.5932 | 0.1449 | 900 | 1.9970 |
2.1825 | 0.1610 | 1000 | 1.9857 |
1.9413 | 0.1771 | 1100 | 1.9693 |
2.2342 | 0.1931 | 1200 | 1.9583 |
1.676 | 0.2092 | 1300 | 1.9447 |
1.8041 | 0.2253 | 1400 | 1.9370 |
1.5181 | 0.2414 | 1500 | 1.9274 |
1.8414 | 0.2575 | 1600 | 1.9187 |
1.523 | 0.2736 | 1700 | 1.9130 |
2.1404 | 0.2897 | 1800 | 1.9028 |
2.13 | 0.3058 | 1900 | 1.8954 |
2.3082 | 0.3219 | 2000 | 1.8864 |
1.878 | 0.3380 | 2100 | 1.8819 |
1.8234 | 0.3541 | 2200 | 1.8729 |
1.5926 | 0.3702 | 2300 | 1.8680 |
1.8501 | 0.3863 | 2400 | 1.8604 |
1.8567 | 0.4024 | 2500 | 1.8563 |
1.6729 | 0.4185 | 2600 | 1.8532 |
2.2024 | 0.4346 | 2700 | 1.8461 |
1.9052 | 0.4507 | 2800 | 1.8366 |
1.9378 | 0.4668 | 2900 | 1.8349 |
1.878 | 0.4829 | 3000 | 1.8296 |
1.9213 | 0.4990 | 3100 | 1.8231 |
1.4924 | 0.5151 | 3200 | 1.8204 |
2.0513 | 0.5312 | 3300 | 1.8152 |
2.0806 | 0.5473 | 3400 | 1.8115 |
1.5045 | 0.5633 | 3500 | 1.8048 |
1.5841 | 0.5794 | 3600 | 1.8029 |
1.7065 | 0.5955 | 3700 | 1.8000 |
1.4571 | 0.6116 | 3800 | 1.7957 |
2.0094 | 0.6277 | 3900 | 1.7914 |
1.6805 | 0.6438 | 4000 | 1.7880 |
2.3777 | 0.6599 | 4100 | 1.7844 |
1.8218 | 0.6760 | 4200 | 1.7801 |
1.7424 | 0.6921 | 4300 | 1.7753 |
1.4086 | 0.7082 | 4400 | 1.7714 |
1.4387 | 0.7243 | 4500 | 1.7692 |
1.518 | 0.7404 | 4600 | 1.7648 |
1.3727 | 0.7565 | 4700 | 1.7627 |
2.0031 | 0.7726 | 4800 | 1.7599 |
1.5169 | 0.7887 | 4900 | 1.7564 |
1.3817 | 0.8048 | 5000 | 1.7543 |
1.5441 | 0.8209 | 5100 | 1.7521 |
1.5501 | 0.8370 | 5200 | 1.7496 |
1.3207 | 0.8531 | 5300 | 1.7469 |
1.8306 | 0.8692 | 5400 | 1.7454 |
2.0758 | 0.8853 | 5500 | 1.7427 |
1.7154 | 0.9014 | 5600 | 1.7415 |
1.4177 | 0.9174 | 5700 | 1.7395 |
1.551 | 0.9335 | 5800 | 1.7378 |
1.5811 | 0.9496 | 5900 | 1.7364 |
1.4597 | 0.9657 | 6000 | 1.7347 |
1.3535 | 0.9818 | 6100 | 1.7339 |
1.4687 | 0.9979 | 6200 | 1.7321 |
1.6851 | 1.0141 | 6300 | 1.7316 |
1.419 | 1.0302 | 6400 | 1.7312 |
1.974 | 1.0463 | 6500 | 1.7305 |
1.6064 | 1.0624 | 6600 | 1.7301 |
1.5348 | 1.0785 | 6700 | 1.7296 |
1.6983 | 1.0946 | 6800 | 1.7288 |
2.0455 | 1.1107 | 6900 | 1.7282 |
1.5807 | 1.1268 | 7000 | 1.7278 |
1.5712 | 1.1428 | 7100 | 1.7275 |
1.7076 | 1.1589 | 7200 | 1.7274 |
1.3702 | 1.1750 | 7300 | 1.7272 |
1.5782 | 1.1911 | 7400 | 1.7271 |
1.5359 | 1.2072 | 7500 | 1.7271 |
1.6834 | 1.2233 | 7600 | 1.7272 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.