Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 793d7a595eea5026_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/793d7a595eea5026_train_data.json
  type:
    field_instruction: inputs
    field_output: targets
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/ec82bdf0-1c38-4767-90a4-49691d3946fb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7680
micro_batch_size: 4
mlflow_experiment_name: /tmp/793d7a595eea5026_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.024532412223029067
wandb_entity: null
wandb_mode: online
wandb_name: 3ac4752d-41eb-417c-8944-fd4d6582c896
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3ac4752d-41eb-417c-8944-fd4d6582c896
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

ec82bdf0-1c38-4767-90a4-49691d3946fb

This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 7680

Training results

Training Loss Epoch Step Validation Loss
3.1051 0.0002 1 2.4445
2.6218 0.0161 100 2.2324
1.903 0.0322 200 2.1711
1.8631 0.0483 300 2.1264
2.4634 0.0644 400 2.0912
2.1012 0.0805 500 2.0665
2.3333 0.0966 600 2.0488
1.9606 0.1127 700 2.0289
1.9752 0.1288 800 2.0109
1.5932 0.1449 900 1.9970
2.1825 0.1610 1000 1.9857
1.9413 0.1771 1100 1.9693
2.2342 0.1931 1200 1.9583
1.676 0.2092 1300 1.9447
1.8041 0.2253 1400 1.9370
1.5181 0.2414 1500 1.9274
1.8414 0.2575 1600 1.9187
1.523 0.2736 1700 1.9130
2.1404 0.2897 1800 1.9028
2.13 0.3058 1900 1.8954
2.3082 0.3219 2000 1.8864
1.878 0.3380 2100 1.8819
1.8234 0.3541 2200 1.8729
1.5926 0.3702 2300 1.8680
1.8501 0.3863 2400 1.8604
1.8567 0.4024 2500 1.8563
1.6729 0.4185 2600 1.8532
2.2024 0.4346 2700 1.8461
1.9052 0.4507 2800 1.8366
1.9378 0.4668 2900 1.8349
1.878 0.4829 3000 1.8296
1.9213 0.4990 3100 1.8231
1.4924 0.5151 3200 1.8204
2.0513 0.5312 3300 1.8152
2.0806 0.5473 3400 1.8115
1.5045 0.5633 3500 1.8048
1.5841 0.5794 3600 1.8029
1.7065 0.5955 3700 1.8000
1.4571 0.6116 3800 1.7957
2.0094 0.6277 3900 1.7914
1.6805 0.6438 4000 1.7880
2.3777 0.6599 4100 1.7844
1.8218 0.6760 4200 1.7801
1.7424 0.6921 4300 1.7753
1.4086 0.7082 4400 1.7714
1.4387 0.7243 4500 1.7692
1.518 0.7404 4600 1.7648
1.3727 0.7565 4700 1.7627
2.0031 0.7726 4800 1.7599
1.5169 0.7887 4900 1.7564
1.3817 0.8048 5000 1.7543
1.5441 0.8209 5100 1.7521
1.5501 0.8370 5200 1.7496
1.3207 0.8531 5300 1.7469
1.8306 0.8692 5400 1.7454
2.0758 0.8853 5500 1.7427
1.7154 0.9014 5600 1.7415
1.4177 0.9174 5700 1.7395
1.551 0.9335 5800 1.7378
1.5811 0.9496 5900 1.7364
1.4597 0.9657 6000 1.7347
1.3535 0.9818 6100 1.7339
1.4687 0.9979 6200 1.7321
1.6851 1.0141 6300 1.7316
1.419 1.0302 6400 1.7312
1.974 1.0463 6500 1.7305
1.6064 1.0624 6600 1.7301
1.5348 1.0785 6700 1.7296
1.6983 1.0946 6800 1.7288
2.0455 1.1107 6900 1.7282
1.5807 1.1268 7000 1.7278
1.5712 1.1428 7100 1.7275
1.7076 1.1589 7200 1.7274
1.3702 1.1750 7300 1.7272
1.5782 1.1911 7400 1.7271
1.5359 1.2072 7500 1.7271
1.6834 1.2233 7600 1.7272

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/ec82bdf0-1c38-4767-90a4-49691d3946fb

Base model

Qwen/Qwen2-0.5B
Adapter
(497)
this model