See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 885d04d2490f6ef8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/885d04d2490f6ef8_train_data.json
type:
field_input: Example
field_instruction: '@partOfSpeech'
field_output: Definition
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/70f19d31-85d8-45f7-9439-955b1b8bc7e1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/885d04d2490f6ef8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.041671875651123055
wandb_entity: null
wandb_mode: online
wandb_name: 36a8de66-ecec-4b15-ab19-b5863b4c1a11
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 36a8de66-ecec-4b15-ab19-b5863b4c1a11
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
70f19d31-85d8-45f7-9439-955b1b8bc7e1
This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 7187
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.9812 | 0.0003 | 1 | 5.9869 |
2.9023 | 0.0278 | 100 | 3.2337 |
3.3221 | 0.0557 | 200 | 3.1458 |
3.0076 | 0.0835 | 300 | 3.1012 |
2.865 | 0.1113 | 400 | 3.0699 |
3.0561 | 0.1391 | 500 | 3.0413 |
3.1306 | 0.1670 | 600 | 3.0259 |
3.1343 | 0.1948 | 700 | 3.0144 |
2.9414 | 0.2226 | 800 | 2.9986 |
2.9757 | 0.2505 | 900 | 2.9911 |
3.2082 | 0.2783 | 1000 | 2.9812 |
2.8002 | 0.3061 | 1100 | 2.9719 |
2.7507 | 0.3339 | 1200 | 2.9659 |
2.6323 | 0.3618 | 1300 | 2.9565 |
3.0745 | 0.3896 | 1400 | 2.9542 |
3.0388 | 0.4174 | 1500 | 2.9435 |
2.9508 | 0.4453 | 1600 | 2.9356 |
2.7546 | 0.4731 | 1700 | 2.9307 |
2.6985 | 0.5009 | 1800 | 2.9260 |
2.7927 | 0.5288 | 1900 | 2.9199 |
2.841 | 0.5566 | 2000 | 2.9151 |
3.0443 | 0.5844 | 2100 | 2.9115 |
2.7652 | 0.6122 | 2200 | 2.9022 |
3.068 | 0.6401 | 2300 | 2.9016 |
2.8894 | 0.6679 | 2400 | 2.8940 |
3.0927 | 0.6957 | 2500 | 2.8911 |
2.8307 | 0.7236 | 2600 | 2.8894 |
2.7508 | 0.7514 | 2700 | 2.8839 |
3.1238 | 0.7792 | 2800 | 2.8822 |
2.9479 | 0.8070 | 2900 | 2.8736 |
2.8698 | 0.8349 | 3000 | 2.8748 |
2.7183 | 0.8627 | 3100 | 2.8701 |
2.7572 | 0.8905 | 3200 | 2.8613 |
2.9963 | 0.9184 | 3300 | 2.8580 |
2.6802 | 0.9462 | 3400 | 2.8532 |
2.8935 | 0.9740 | 3500 | 2.8504 |
2.6542 | 1.0019 | 3600 | 2.8475 |
2.4456 | 1.0297 | 3700 | 2.8660 |
2.5414 | 1.0576 | 3800 | 2.8708 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.