Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 885d04d2490f6ef8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/885d04d2490f6ef8_train_data.json
  type:
    field_input: Example
    field_instruction: '@partOfSpeech'
    field_output: Definition
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/70f19d31-85d8-45f7-9439-955b1b8bc7e1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/885d04d2490f6ef8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.041671875651123055
wandb_entity: null
wandb_mode: online
wandb_name: 36a8de66-ecec-4b15-ab19-b5863b4c1a11
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 36a8de66-ecec-4b15-ab19-b5863b4c1a11
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

70f19d31-85d8-45f7-9439-955b1b8bc7e1

This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 7187

Training results

Training Loss Epoch Step Validation Loss
5.9812 0.0003 1 5.9869
2.9023 0.0278 100 3.2337
3.3221 0.0557 200 3.1458
3.0076 0.0835 300 3.1012
2.865 0.1113 400 3.0699
3.0561 0.1391 500 3.0413
3.1306 0.1670 600 3.0259
3.1343 0.1948 700 3.0144
2.9414 0.2226 800 2.9986
2.9757 0.2505 900 2.9911
3.2082 0.2783 1000 2.9812
2.8002 0.3061 1100 2.9719
2.7507 0.3339 1200 2.9659
2.6323 0.3618 1300 2.9565
3.0745 0.3896 1400 2.9542
3.0388 0.4174 1500 2.9435
2.9508 0.4453 1600 2.9356
2.7546 0.4731 1700 2.9307
2.6985 0.5009 1800 2.9260
2.7927 0.5288 1900 2.9199
2.841 0.5566 2000 2.9151
3.0443 0.5844 2100 2.9115
2.7652 0.6122 2200 2.9022
3.068 0.6401 2300 2.9016
2.8894 0.6679 2400 2.8940
3.0927 0.6957 2500 2.8911
2.8307 0.7236 2600 2.8894
2.7508 0.7514 2700 2.8839
3.1238 0.7792 2800 2.8822
2.9479 0.8070 2900 2.8736
2.8698 0.8349 3000 2.8748
2.7183 0.8627 3100 2.8701
2.7572 0.8905 3200 2.8613
2.9963 0.9184 3300 2.8580
2.6802 0.9462 3400 2.8532
2.8935 0.9740 3500 2.8504
2.6542 1.0019 3600 2.8475
2.4456 1.0297 3700 2.8660
2.5414 1.0576 3800 2.8708

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/70f19d31-85d8-45f7-9439-955b1b8bc7e1

Base model

Qwen/Qwen2-0.5B
Adapter
(497)
this model