metadata
language:
- de
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- rmacek/ORF-whisper-small
metrics:
- wer
model-index:
- name: Whisper ORF Bundeslaender
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: ORF Bundesländer Voices
type: rmacek/ORF-whisper-small
args: 'config: de, split: test'
metrics:
- type: wer
value: 26.328635352109302
name: Wer
Whisper ORF Bundeslaender
This model is a fine-tuned version of openai/whisper-small on the ORF Bundesländer Voices dataset. It achieves the following results on the evaluation set:
- Loss: 0.6154
- Wer: 26.3286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5731 | 1.7153 | 1000 | 0.6095 | 36.1178 |
0.4196 | 3.4305 | 2000 | 0.6040 | 26.1875 |
0.4214 | 5.1458 | 3000 | 0.6086 | 26.3813 |
0.3579 | 6.8611 | 4000 | 0.6154 | 26.3286 |
Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1