rishabhsabnavis's picture
End of training
3a318fe verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - danavery/urbansound8K
metrics:
  - accuracy
  - f1
model-index:
  - name: wav2vec2-finetuned-urbansound8k
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: URBAN-SOUND8K
          type: danavery/urbansound8K
          args: audio-classification
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9650829994275901
          - name: F1
            type: f1
            value: 0.965058831730144

wav2vec2-finetuned-urbansound8k

This model is a fine-tuned version of facebook/wav2vec2-base on the URBAN-SOUND8K dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2672
  • Accuracy: 0.9651
  • F1: 0.9651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6296 1.0 1747 0.9168 0.7098 0.6543
0.3658 2.0 3494 0.4589 0.8798 0.8788
0.108 3.0 5241 0.4362 0.9107 0.9102
0.3019 4.0 6988 0.4455 0.9216 0.9215
0.0019 5.0 8735 0.3645 0.9433 0.9433
0.0014 6.0 10482 0.3780 0.9416 0.9417
0.1803 7.0 12229 0.3196 0.9519 0.9519
0.0004 8.0 13976 0.2672 0.9651 0.9651

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1