yolo11n-coreml
This model is a CoreML-converted version of Ultralytics/YOLO11n, optimized for running directly on Apple devices.
Model Details
- Author: Riddhiman Rana
- Converted from: Ultralytics YOLOv11n PyTorch model
- Format:
.mlpackage
(CoreML) - Architecture: YOLOv11n
- License: AGPL-3.0
- Tags: real-time, object-detection, coreml, mobile
Compatibility
Tested on:
- iPhone 11
- iPhone 12
- iPhone 13 Pro Max
- iPhone 14
- Apple Silicon Macs: M1 & M2 Pro
Achieves real-time inference (~30–60 FPS depending on device and resolution) in on-device vision pipelines.
Intended Use
- Real-time object detection on iOS/macOS using CoreML
- Integration in Swift or SwiftUI apps using
VNCoreMLModel
Limitations
- Converted from YOLO11n: optimized for performance, not maximum accuracy
- Works best with common COCO-style classes
- Not trained or optimized for thermal/night vision, medical imaging, or domain-specific use
How to Use
Swift code snippet to load and run the model:
import Vision
import CoreML
let model = try VNCoreMLModel(for: YOLO11n().model)
let request = VNCoreMLRequest(model: model) { request, error in
// handle results
}
(Ensure .mlpackage
is added to Xcode project.)
Sources
- Original PyTorch model: Ultralytics/YOLOv11
- CoreML conversion via
coremltools
Citation
If you use this model, cite the original YOLO11N Model:
@misc{yolov11,
author = {Ultralytics},
title = {YOLOv11},
year = 2024,
url = {https://github.com/ultralytics/ultralytics}
}
- Downloads last month
- 4
Model tree for riddhimanrana/yolo11n-coreml
Base model
Ultralytics/YOLO11